Calculate zonal harmonic representation of planetary gravity
Aerospace Blockset / Environment / Gravity
The Zonal Harmonic Gravity Model block calculates the zonal harmonic representation of planetary gravity at a specific location based on planetary gravitational potential. This block provides a convenient way to describe the gravitational field of a planet outside its surface.
By default, the block uses the fourth order zonal coefficient for Earth to calculate the zonal harmonic gravity. It also allows you to specify the second or third zonal coefficient.
For information on the planetary parameter values for each planet in the block
implementation, see Algorithms
.
This block is implemented using the following planetary parameter values for each planet:
Planet | Equatorial Radius (Re) in Meters | Gravitational Parameter (GM) in m 3 /s 2 | Zonal Harmonic Coefficients (J Values) |
---|---|---|---|
Earth | 6378.1363e3 | 3.986004415e14 | [ 0.0010826269 -0.0000025323 -0.0000016204 ] |
Jupiter | 71492e3 | 1.268e17 | [0.01475 0 -0.00058] |
Mars | 3397.2e3 | 4.305e13 | [ 0.001964 0.000036 ] |
Mercury | 2439.0e3 | 2.2032e13 | 0.00006 |
Moon | 1738.0e3 | 4902.799e9 | 0.0002027 |
Neptune | 24764e3 | 6.809e15 | 0.004 |
Saturn | 60268e3 | 3.794e16 | [0.01645 0 -0.001] |
Uranus | 25559e3 | 5.794e15 | 0.012 |
Venus | 6052.0e3 | 3.257e14 | 0.000027 |
[1] Vallado, David, Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.
[2] Fortescue, P., J. Stark, G. Swinerd, eds.. Spacecraft Systems Engineering, 3d ed. West Sussex: Wiley & Sons, 2003.
[3] Tewari, A. Boston: Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink. Boston: Birkhäuser, 2007.