Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots
plotPartialDependence(
computes and plots the partial dependence between the predictor variables listed
in Mdl
,Vars
)Vars
and the responses predicted by using the regression
model Mdl
, which contains predictor data.
If you specify one variable in Vars
, the
function creates a line plot of the partial dependence against the
variable.
If you specify two variables in Vars
, the
function creates a surface plot of the partial dependence against
the two variables.
plotPartialDependence(
computes and plots the partial dependence between the predictor variables listed
in Mdl
,Vars
,Labels
)Vars
and the scores for the classes specified in
Labels
by using the classification model
Mdl
, which contains predictor data.
If you specify one variable in Vars
and one
class in Labels
, the function creates a line
plot of the partial dependence against the variable for the
specified class.
If you specify one variable in Vars
and
multiple classes in Labels
, the function
creates a line plot for each class on one figure.
If you specify two variables in Vars
and one
class in Labels
, the function creates a surface
plot of the partial dependence against the two variables.
plotPartialDependence(___,
uses new predictor data Data
)Data
. You can specify
Data
in addition to any of the input argument
combinations in the previous syntaxes.
plotPartialDependence(___,
uses additional options specified by one or more name-value pair arguments. For
example, if you specify Name,Value
)'Conditional','absolute'
, the
plotPartialDependence
function creates a figure
including a PDP, a scatter plot of the selected predictor variable and predicted
responses or scores, and an ICE plot for each observation.
plotPartialDependence
uses a predict
function
to predict responses or scores. plotPartialDependence
chooses the
proper predict
function according to Mdl
and
runs predict
with its default settings. For details about each
predict
function, see the predict
functions in
the following two tables. If Mdl
is a tree-based model (not
including a boosted ensemble of trees) and 'Conditional'
is
'none'
, then plotPartialDependence
uses the
weighted traversal algorithm instead of the predict
function. For
details, see Weighted Traversal Algorithm.
Regression Model Object
Model Type | Full or Compact Regression Model Object | Function to Predict Responses |
---|---|---|
Bootstrap aggregation for ensemble of decision trees | CompactTreeBagger | predict |
Bootstrap aggregation for ensemble of decision trees | TreeBagger | predict |
Ensemble of regression models | RegressionEnsemble , RegressionBaggedEnsemble , CompactRegressionEnsemble | predict |
Gaussian kernel regression model using random feature expansion | RegressionKernel | predict |
Gaussian process regression | RegressionGP , CompactRegressionGP | predict |
Generalized linear mixed-effect model | GeneralizedLinearMixedModel | predict |
Generalized linear model | GeneralizedLinearModel , CompactGeneralizedLinearModel | predict |
Linear mixed-effect model | LinearMixedModel | predict |
Linear regression | LinearModel , CompactLinearModel | predict |
Linear regression for high-dimensional data | RegressionLinear | predict |
Nonlinear regression | NonLinearModel | predict |
Regression tree | RegressionTree , CompactRegressionTree | predict |
Support vector machine regression | RegressionSVM , CompactRegressionSVM | predict |
Classification Model Object
Model Type | Full or Compact Classification Model Object | Function to Predict Labels and Scores |
---|---|---|
Discriminant analysis classifier | ClassificationDiscriminant ,
CompactClassificationDiscriminant | predict |
Multiclass model for support vector machines or other classifiers | ClassificationECOC , CompactClassificationECOC | predict |
Ensemble of learners for classification | ClassificationEnsemble , CompactClassificationEnsemble ,
ClassificationBaggedEnsemble | predict |
Gaussian kernel classification model using random feature expansion | ClassificationKernel | predict |
k-nearest neighbor classifier | ClassificationKNN | predict |
Linear classification model | ClassificationLinear | predict |
Multiclass naive Bayes model | ClassificationNaiveBayes , CompactClassificationNaiveBayes | predict |
Support vector machine classifier for one-class and binary classification | ClassificationSVM , CompactClassificationSVM | predict |
Binary decision tree for multiclass classification | ClassificationTree , CompactClassificationTree | predict |
Bagged ensemble of decision trees | TreeBagger , CompactTreeBagger | predict |
partialDependence
computes partial dependence without
visualization. The function can compute partial dependence for two variables and
multiple classes in one function call.
[2] Goldstein, Alex, Adam Kapelner, Justin Bleich, and Emil Pitkin. “Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation.” Journal of Computational and Graphical Statistics 24, no. 1 (January 2, 2015): 44–65.
[3] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. New York, NY: Springer New York, 2001.
lime
| oobPermutedPredictorImportance
| partialDependence
| predictorImportance (RegressionEnsemble)
| predictorImportance (RegressionTree)
| relieff
| sequentialfs