Partition a datastore
Create a datastore for a large collection of files. For this example, use ten copies of the sample file airlinesmall.csv
. To handle missing fields in the tabular data, specify the name-value pairs TreatAsMissing
and MissingValue
.
files = repmat({'airlinesmall.csv'},1,10); ds = tabularTextDatastore(files,... 'TreatAsMissing','NA','MissingValue',0);
Partition the datastore into three parts and return the first partition. The partition
function returns approximately the first third of the data from the datastore ds
.
subds = partition(ds,3,1)
subds = TabularTextDatastore with properties: Files: { ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'; ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'; ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv' ... and 1 more } FileEncoding: 'UTF-8' AlternateFileSystemRoots: {} ReadVariableNames: true VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more} Text Format Properties: NumHeaderLines: 0 Delimiter: ',' RowDelimiter: '\r\n' TreatAsMissing: 'NA' MissingValue: 0 Advanced Text Format Properties: TextscanFormats: {'%f', '%f', '%f' ... and 26 more} TextType: 'char' ExponentCharacters: 'eEdD' CommentStyle: '' Whitespace: ' \b\t' MultipleDelimitersAsOne: false Properties that control the table returned by preview, read, readall: SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more} SelectedFormats: {'%f', '%f', '%f' ... and 26 more} ReadSize: 20000 rows
The Files
property of the datastore contains a list of files included in the datastore. Check the number of files in the Files
property of the datastore ds
and the partitioned datastore subds
. The datastore ds
contains ten files and the partition subds
contains the first four files.
length(ds.Files)
ans = 10
length(subds.Files)
ans = 4
Create a datastore from the sample file, mapredout.mat
, which is the output file of the mapreduce
function.
ds = datastore('mapredout.mat');
Get the default number of partitions for ds
.
n = numpartitions(ds);
Partition the datastore into the default number of partitions and return the datastore corresponding to the first partition.
subds = partition(ds,n,1);
Read the data in subds
.
while hasdata(subds) data = read(subds); end
Create a datastore that contains three image files.
ds = imageDatastore({'street1.jpg','peppers.png','corn.tif'})
ds = ImageDatastore with properties: Files: { ' ...\matlab\toolbox\matlab\demos\street1.jpg'; ' ...\matlab\toolbox\matlab\imagesci\peppers.png'; ' ...\matlab\toolbox\matlab\imagesci\corn.tif' } ReadSize: 1 Labels: {} ReadFcn: @readDatastoreImage
Partition the datastore by files and return the part corresponding to the second file.
subds = partition(ds,'Files',2)
subds = ImageDatastore with properties: Files: { ' ...\matlab\toolbox\matlab\imagesci\peppers.png' } ReadSize: 1 Labels: {} ReadFcn: @readDatastoreImage
subds
contains one file.
Create a datastore from the sample file, mapredout.mat
,
which is the output file of the mapreduce
function.
ds = datastore('mapredout.mat');
Partition the datastore into three parts on three workers in a parallel pool.
numWorkers = 3; p = parpool('local',numWorkers); n = numpartitions(ds,p); parfor ii=1:n subds = partition(ds,n,ii); while hasdata(subds) data = read(subds); end end
ds
— Input datastoreInput datastore. You can use the datastore
function to
create a datastore object from your data.
n
— Number of partitionsNumber of partitions, specified as a positive integer.
If you specify a number of partitions that is not a numerical factor of
the number of files in the datastore, partition
will
place each of the remaining observations in the existing partitions,
starting with the first partition.
The number of existing partitions that contain an additional observation
is equal to the remainder obtained when dividing the number of files in the
datastore by the number of partitions. For example, if your datastore object
contains 23 files that you wish to partition into 3 parts, the first two
partitions that partition
creates will contain 8 files,
and the last partition will contain 7 files.
Example: 3
Data Types: double
index
— IndexIndex, specified as a positive integer.
Example: 1
Data Types: double
filename
— file nameFile name, specified as a character vector or string scalar.
The value of filename
must match exactly the file name
contained in the Files
property of the datastore. To
ensure that the file names match exactly, specify
filename
using ds.Files{N}
where
N
is the index of the file in the
Files
property. For example,
ds.Files{3}
specifies the third file in the datastore
ds
.
Example: ds.Files{3}
Example: 'file1.csv'
Example: '../dir/data/file1.csv'
Example: 'hdfs://myserver:7867/data/file1.txt'
Data Types: char
subds
— Output datastoreOutput datastore. The output datastore is of the same type as the input
datastore ds
.
You have a modified version of this example. Do you want to open this example with your edits?