Detect objects using YOLO v2 object detector configured for monocular camera
detects objects within image bboxes
= detect(detector
,I
)I
using you look only once version 2
(YOLO v2) object detector configured for a monocular camera. The locations of objects
detected are returned as a set of bounding boxes.
When using this function, use of a CUDA®-enabled NVIDIA® GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox™.
[___,
returns a categorical array of labels assigned to the bounding boxes in addition to the
output arguments from the previous syntax. The labels used for object classes are defined
during training using the labels
] = detect(detector
,I
)trainYOLOv2ObjectDetector
(Computer Vision Toolbox) function.
[___] = detect(___,
detects objects within the rectangular search region specified by
roi
)roi
. Use output arguments from any of the previous syntaxes. Specify
input arguments from any of the previous syntaxes.
detects objects within the series of images returned by the detectionResults
= detect(detector
,ds
)read
(Computer Vision Toolbox) function
of the input datastore.
[___] = detect(___,
also specifies options using one or more Name,Value
)Name,Value
pair arguments in
addition to the input arguments in any of the preceding syntaxes.
configureDetectorMonoCamera
| evaluateDetectionMissRate
(Computer Vision Toolbox) | evaluateDetectionPrecision
(Computer Vision Toolbox) | selectStrongestBboxMulticlass
(Computer Vision Toolbox) | trainYOLOv2ObjectDetector
(Computer Vision Toolbox)