Class: TreeBagger
Out-of-bag quantile loss of bag of regression trees
returns
half of the out-of-bag mean
absolute deviation (MAD) from comparing the true responses in err
= quantileError(Mdl
)Mdl.Y
to
the predicted, out-of-bag medians at Mdl.X
, the
predictor data, and using the bag of regression trees Mdl
. Mdl
must
be a TreeBagger
model
object.
uses
additional options specified by one or more err
= quantileError(Mdl
,Name,Value
)Name,Value
pair
arguments. For example, specify quantile probabilities, the error
type, or which trees to include in the quantile-regression-error estimation.
The out-of-bag ensemble error estimator is unbiased for the true ensemble error. So, to tune parameters of a random forest, estimate the out-of-bag ensemble error instead of implementing cross-validation.
[1] Breiman, L. Random Forests. Machine Learning 45, pp. 5–32, 2001.
[2] Meinshausen, N. “Quantile Regression Forests.” Journal of Machine Learning Research, Vol. 7, 2006, pp. 983–999.