Plot 3-D surface
fsurf(
creates a
surface plot of the function f
)z = f(x,y)
over the
default interval [-5 5]
for x
and y
.
fsurf(
plots
over the specified interval. To use the same interval for both f
,xyinterval
)x
and y
,
specify xyinterval
as a two-element vector of
the form [min max]
. To use different intervals,
specify a four-element vector of the form [xmin xmax ymin
ymax]
.
fsurf(
plots
over the specified interval. To use the same interval for both funx
,funy
,funz
,uvinterval
)u
and v
,
specify uvinterval
as a two-element vector of
the form [min max]
. To use different intervals,
specify a four-element vector of the form [umin umax vmin
vmax]
.
fsurf(___,
sets
the line style, marker symbol, and surface color. For example, LineSpec
)'-r'
specifies
red lines. Use this option after any of the previous input argument
combinations.
fsurf(___,
specifies
surface properties using one or more name-value pair arguments. Use
this option after any of the input argument combinations in the previous
syntaxes.Name,Value
)
fsurf(
plots
into the axes specified by ax
,___)ax
instead of the
current axes (gca
).
returns
a fs
= fsurf(___)FunctionSurface
object or ParameterizedFunctionSurface
object,
depending on the inputs. Use fs
to query and modify
properties of a specific surface. For a list of properties, see FunctionSurface Properties or ParameterizedFunctionSurface Properties.
Plot the piecewise expression
over
Specify the plotting interval as the second input argument of fsurf
. When you plot multiple surfaces over different intervals in the same axes, the axis limits adjust to include all the data.
f1 = @(x,y) erf(x)+cos(y); fsurf(f1,[-5 0 -5 5]) hold on f2 = @(x,y) sin(x)+cos(y); fsurf(f2,[0 5 -5 5]) hold off
Plot the parameterized surface
for and . Add light to the surface using camlight
.
r = @(u,v) 2 + sin(7.*u + 5.*v); funx = @(u,v) r(u,v).*cos(u).*sin(v); funy = @(u,v) r(u,v).*sin(u).*sin(v); funz = @(u,v) r(u,v).*cos(v); fsurf(funx,funy,funz,[0 2*pi 0 pi]) camlight
For and from to , plot the 3-D surface . Add a title and axis labels and display the axes outline.
fsurf(@(x,y) y.*sin(x)-x.*cos(y),[-2*pi 2*pi]) title('ysin(x) - xcos(y) for x and y in [-2\pi,2\pi]') xlabel('x'); ylabel('y'); zlabel('z'); box on
Set the x-axis tick values and associated labels using the XTickLabel
and XTick
properties of axes object. Access the axes object using gca
. Similarly, set the y-axis tick values and associated labels.
ax = gca; ax.XTick = -2*pi:pi/2:2*pi; ax.XTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'}; ax.YTick = -2*pi:pi/2:2*pi; ax.YTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0','\pi/2','\pi','3\pi/2','2\pi'};
Plot the parametric surface , , with different line styles for different values of . For , use a dashed green line for the surface edges. For , turn off the edges by setting the EdgeColor
property to 'none'
.
funx = @(u,v) u.*sin(v); funy = @(u,v) -u.*cos(v); funz = @(u,v) v; fsurf(funx,funy,funz,[-5 5 -5 -2],'--','EdgeColor','g') hold on fsurf(funx,funy,funz,[-5 5 -2 2],'EdgeColor','none') hold off
Plot the parametric surface
Assign the parameterized function surface object to a variable.
x = @(u,v) exp(-abs(u)/10).*sin(5*abs(v)); y = @(u,v) exp(-abs(u)/10).*cos(5*abs(v)); z = @(u,v) u; fs = fsurf(x,y,z)
fs = ParameterizedFunctionSurface with properties: XFunction: @(u,v)exp(-abs(u)/10).*sin(5*abs(v)) YFunction: @(u,v)exp(-abs(u)/10).*cos(5*abs(v)) ZFunction: @(u,v)u EdgeColor: [0 0 0] LineStyle: '-' FaceColor: 'interp' Show all properties
Change the plotting interval for u
to [-30 30]
by setting the URange
property of object. Add transparency to the surface by setting the FaceAlpha
property to a value between 0 (transparent) and 1 (opaque).
fs.URange = [-30 30];
fs.FaceAlpha = .5;
Show contours below a surface plot by setting the 'ShowContours'
option to 'on'
.
f = @(x,y) 3*(1-x).^2.*exp(-(x.^2)-(y+1).^2)... - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2)... - 1/3*exp(-(x+1).^2 - y.^2); fsurf(f,[-3 3],'ShowContours','on')
Control the resolution of a surface plot using the 'MeshDensity'
option. Increasing 'MeshDensity'
can make smoother, more accurate plots while decreasing it can increase plotting speed.
Create two plots in a tiled chart layout. In the first plot, display the parametric surface , , . The surface has a large gap. Fix this issue by increasing the 'MeshDensity'
to 40
in the second plot. fsurf
fills the gap, showing that by increasing 'MeshDensity'
you increased the resolution.
tiledlayout(2,1) nexttile fsurf(@(s,t) sin(s), @(s,t) cos(s), @(s,t) t/10.*sin(1./s)) view(-172,25) title('Default MeshDensity = 35') nexttile fsurf(@(s,t) sin(s), @(s,t) cos(s), @(s,t) t/10.*sin(1./s),'MeshDensity',40) view(-172,25) title('Increased MeshDensity = 40')
f
— 3-D function to plot3-D function to plot, specified as a function handle to a named or anonymous function.
Specify a function of the form z = f(x,y)
.
The function must accept two matrix input arguments and return a matrix
output argument of the same size. Use array operators instead of matrix
operators for the best performance. For example, use .*
(times
)
instead of * (mtimes
).
Example: f = @(x,y) sin(x) + cos(y);
xyinterval
— Plotting interval for x
and y
[-5 5 -5 5]
(default) | vector of form [min max]
| vector of form [xmin xmax ymin ymax]
Plotting interval for x
and y
,
specified in one of these forms:
Vector of form [min max]
—
Use the interval [min max]
for both x
and y
Vector of form [xmin xmax ymin ymax]
—
Use the interval [xmin xmax]
for x
and [ymin
ymax]
for y
.
funx
— Parametric function for x coordinatesParametric function for x coordinates, specified as a function handle to a named or anonymous function.
Specify a function of the form x = funx(u,v)
.
The function must accept two matrix input arguments and return a matrix
output argument of the same size. Use array operators instead of matrix
operators for the best performance. For example, use .*
(times
)
instead of * (mtimes
).
Example: funx = @(u,v) u.*sin(v);
funy
— Parametric function for y coordinatesParametric function for y coordinates, specified as a function handle to a named or anonymous function.
Specify a function of the form y = funy(u,v)
.
The function must accept two matrix input arguments and return a matrix
output argument of the same size. Use array operators instead of matrix
operators for the best performance. For example, use .*
(times
)
instead of * (mtimes
).
Example: funy = @(t) @(u,v) -u.*cos(v);
funz
— Parametric function for z coordinatesParametric function for z coordinates, specified as a function handle to a named or anonymous function.
Specify a function of the form z = funz(u,v)
.
The function must accept two matrix input arguments and return a matrix
output argument of the same size. Use array operators instead of matrix
operators for the best performance. For example, use .*
(times
)
instead of * (mtimes
).
Example: funz = @(u,v) v;
uvinterval
— Plotting interval for u
and v
[-5 5 -5 5]
(default) | vector of form [min max]
| vector of form [umin umax vmin vmax]
Plotting interval for u
and v
,
specified in one of these forms:
Vector of form [min max]
—
Use the interval [min max]
for both u
and v
Vector of form [umin umax vmin vmax]
—
Use the interval [umin umax]
for u
and [vmin
vmax]
for v
.
ax
— Axes objectAxes object. If you do not specify an axes object, then fsurf
uses
the current axes.
LineSpec
— Line specificationLine specification, specified as a character vector or string with a line style, marker, and color. The elements can appear in any order, and you can omit one or more options. To show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o'
specifies a red color, a dashed
line, and circle markers
Line Style Specifier | Description |
---|---|
- | Solid line (default) |
-- | Dashed line |
: | Dotted line |
-. | Dash-dot line |
Marker Specifier | Description |
---|---|
o | Circle |
+ | Plus sign |
* | Asterisk |
. | Point |
x | Cross |
s | Square |
d | Diamond |
^ | Upward-pointing triangle |
v | Downward-pointing triangle |
> | Right-pointing triangle |
< | Left-pointing triangle |
p | Pentagram |
h | Hexagram |
Color Specifier | Description |
---|---|
| yellow |
| magenta |
| cyan |
| red |
| green |
| blue |
| white |
| black |
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
'Marker','o','MarkerFaceColor','red'
The properties list here are only a subset. For a full list, see FunctionSurface Properties orParameterizedFunctionSurface Properties.
'MeshDensity'
— Number of evaluation points per directionNumber of evaluation points per direction, specified as a number.
The default is 35
. Because fsurf
objects
use adaptive evaluation, the actual number of evaluation points is
greater.
Example: 100
'ShowContours'
— Display contour plot under plot'off'
(default) | on/off logical valueDisplay contour plot under plot, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'EdgeColor'
— Line color[0 0 0]
(default) | 'interp'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Line color, specified as 'interp'
, an RGB triplet, a hexadecimal color
code, a color name, or a short name. The default RGB triplet value of [0 0
0]
corresponds to black. The 'interp'
value colors the
edges based on the ZData
values.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
'LineStyle'
— Line style'-'
(default) | '--'
| ':'
| '-.'
| 'none'
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
'-' | Solid line |
|
'--' | Dashed line |
|
':' | Dotted line |
|
'-.' | Dash-dotted line |
|
'none' | No line | No line |
'LineWidth'
— Line width0.5
(default) | positive valueLine width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has markers, then the line width also affects the marker edges.
The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.
'Marker'
— Marker symbol'none'
(default) | 'o'
| '+'
| '*'
| '.'
| 'x'
| ...
Marker symbol, specified as one of the markers listed in this table. By default, the object does not display markers. Specifying a marker symbol adds markers at the intersection points of mesh lines.
Value | Description |
---|---|
'o' | Circle |
'+' | Plus sign |
'*' | Asterisk |
'.' | Point |
'x' | Cross |
'square' or 's' | Square |
'diamond' or 'd' | Diamond |
'^' | Upward-pointing triangle |
'v' | Downward-pointing triangle |
'>' | Right-pointing triangle |
'<' | Left-pointing triangle |
'pentagram' or 'p' | Five-pointed star (pentagram) |
'hexagram' or 'h' | Six-pointed star (hexagram) |
'none' | No markers |
Example: '+'
Example: 'diamond'
'MarkerSize'
— Marker size6
(default) | positive valueMarker size, specified as a positive value in points, where 1 point = 1/72 of an inch.
fs
— One or more FunctionSurface
or ParameterizedFunctionSurface
objectsOne or more FunctionSurface
or ParameterizedFunctionSurface
objects,
returned as a scalar or a vector.
If you use the fsurf(f)
syntax
or a variation of this syntax, then fsurf
returns FunctionSurface
objects.
If you use the fsurf(funx,funy,funz)
syntax
or a variation of this syntax, then fsurf
returns ParameterizedFunctionSurface
objects.
You can use these objects to query and modify properties of a specific surface. For a list of properties, see FunctionSurface Properties and ParameterizedFunctionSurface Properties.
You have a modified version of this example. Do you want to open this example with your edits?