WPTREE constructor
T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,PARAMETER)
T = wptree(ORDER,DEPTH,X,WNAME)
T = wptree(ORDER,DEPTH,X,WNAME,'shannon')
T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA)
T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,PARAMETER)
returns
a complete wavelet packet tree T
.
ORDER
is an integer representing the order
of the tree (the number of “children” of each non terminal
node). ORDER
must be equal to 2 or 4.
If ORDER = 2
, T
is a WPTREE
object corresponding to a wavelet packet decomposition of the vector
(signal) X
, at level DEPTH
with
a particular wavelet WNAME
.
If ORDER = 4
, T
is a WPTREE
object corresponding to a wavelet packet decomposition of the matrix
(image) X
, at level DEPTH
with
a particular wavelet WNAME
.
ENT_TYPE
is a character vector or string scalar containing the entropy type
and ENT_PAR
is an optional parameter used for entropy computation
(see wentropy
, wpdec
, or wpdec2
for more information).
T = wptree(ORDER,DEPTH,X,WNAME)
is equivalent
to T = wptree(ORDER,DEPTH,X,WNAME,'shannon')
With T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA)
you
may set a userdata field.
The function wptree
returns
a WPTREE object.
For more information on object fields, see the get
function or type
help wptree/get
Class WPTREE (Parent class: DTREE)
'dtree' | DTREE parent object |
'wavInfo' | Structure (wavelet information) |
'entInfo' | Structure (entropy information) |
The wavelet information structure, 'wavInfo'
,
contains
'wavName' | Wavelet name |
'Lo_D' | Low Decomposition filter |
'Hi_D' | High Decomposition filter |
'Lo_R' | Low Reconstruction filter |
'Hi_R' | High Reconstruction filter |
The entropy information structure, 'entInfo'
,
contains
'entName' | Entropy name |
'entPar' | Entropy parameter |
Fields from the DTREE parent object:
'allNI' | All nodes information |
'allNI'
is an array of size nbnode
by 5
,
which contains
ind | Index |
size | Size of data |
ent | Entropy |
ento | Optimal entropy |
Each line is built based on the following scheme:
% Create a wavelet packet tree.
x = rand(1,512);
t = wptree(2,3,x,'db3');
t = wpjoin(t,[4;5]);
% Plot tree t4.
plot(t);
% Click the node (3,0), (see the plot
function).