Evaluate image classifier on collection of image sets
returns a normalized confusion matrix, confMat
= evaluate(categoryClassifier
,imds
)confMat
.
[
additionally returns the corresponding label indexes and score.confMat
,knownLabelIdx
,predictedLabelIdx
,score
] =
evaluate(categoryClassifier
,imds
)
Load two image categories.
setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets'); imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',... 'foldernames');
Split the data set into a training and test data. Pick 30% of images from each set for the training data and the remainder 70% for the test data.
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
Create bag of visual words.
bag = bagOfFeatures(trainingSet);
Creating Bag-Of-Features. ------------------------- * Image category 1: books * Image category 2: cups * Selecting feature point locations using the Grid method. * Extracting SURF features from the selected feature point locations. ** The GridStep is [8 8] and the BlockWidth is [32 64 96 128]. * Extracting features from 4 images...done. Extracted 76800 features. * Keeping 80 percent of the strongest features from each category. * Using K-Means clustering to create a 500 word visual vocabulary. * Number of features : 61440 * Number of clusters (K) : 500 * Initializing cluster centers...100.00%. * Clustering...completed 25/100 iterations (~0.17 seconds/iteration)...converged in 25 iterations. * Finished creating Bag-Of-Features
Train a classifier with the training sets.
categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);
Training an image category classifier for 2 categories. -------------------------------------------------------- * Category 1: books * Category 2: cups * Encoding features for 4 images...done. * Finished training the category classifier. Use evaluate to test the classifier on a test set.
Evaluate the classifier using test images. Display the confusion matrix.
confMatrix = evaluate(categoryClassifier,testSet)
Evaluating image category classifier for 2 categories. ------------------------------------------------------- * Category 1: books * Category 2: cups * Evaluating 8 images...done. * Finished evaluating all the test sets. * The confusion matrix for this test set is: PREDICTED KNOWN | books cups -------------------------- books | 0.75 0.25 cups | 0.25 0.75 * Average Accuracy is 0.75.
confMatrix = 2×2
0.7500 0.2500
0.2500 0.7500
Find the average accuracy of the classification.
mean(diag(confMatrix))
ans = 0.7500
Apply the newly trained classifier to categorize new images.
img = imread(fullfile(setDir,'cups','bigMug.jpg')); [labelIdx, score] = predict(categoryClassifier,img);
Display the classification label.
categoryClassifier.Labels(labelIdx)
ans = 1x1 cell array
{'cups'}
imds
— Data store object of imagesImageDatastore
objectImages, specified in an ImageDatastore
object.
categoryClassifier
— Image category classifierimageCategoryClassifier
objectImage category classifier, specified as an imageCategoryClassifier
object.
confMat
— Confusion matrixConfusion matrix, returned as a matrix. The row indices correspond to known labels and the columns correspond to the predicted labels.
knownLabelIdx
— Label index for image setLabel index for image set, returned as an M-by-1 vector for
M images. The knownLabelIdx
output value
corresponds to the index of an image set used to train the bag of features.
predictedLabelIdx
— Predicted label indexPredicted label index, returned as an M-by-1 vector for
M images. The predictedLabelIdx
output value
corresponds to the index of an image set used to train the bag of features. The
predicted index corresponds to the class with the largest value in the
score
output.
score
— Prediction scorePrediction score, specified as an M-by-N
matrix. N represents the number of classes. M
represents the number of images in the imageSet
input object, imgSet
. The score provides a
negated average binary loss per class. Each class is a support vector machine (SVM)
multiclass classifier that uses the error-correcting output codes (ECOC)
approach.
You have a modified version of this example. Do you want to open this example with your edits?