Estimate fundamental matrix from corresponding points in stereo images
estimateFundamentalMatrix
estimates the
fundamental matrix from corresponding points in stereo images. This
function can be configured to use all corresponding points or to exclude
outliers. You can exclude outliers by using a robust estimation technique
such as random-sample consensus (RANSAC). When you use robust estimation,
results may not be identical between runs because of the randomized
nature of the algorithm.
returns the 3-by-3 fundamental matrix, F
= estimateFundamentalMatrix(matchedPoints1
,matchedPoints2
)F
, using the least
median of squares (LMedS) method. The input points can be
M-by-2 matrices of M number of [x y]
coordinates, or KAZEPoints
, SURFPoints
, MSERRegions
, ORBPoints
, or cornerPoints
object.
[
additionally
returns logical indices, F
,inliersIndex
]
= estimateFundamentalMatrix(matchedPoints1
,matchedPoints2
)inliersIndex
, for the
inliers used to compute the fundamental matrix. The inliersIndex
output
is an M-by-1 vector. The function sets the elements
of the vector to true
when the corresponding point
was used to compute the fundamental matrix. The elements are set to false
if
they are not used.
[
additionally
returns a status code.F
,inliersIndex
,status
]
= estimateFundamentalMatrix(matchedPoints1
,matchedPoints2
)
[
uses
additional options specified by one or more Name,Value pair
arguments.F
,inliersIndex
,status
]
= estimateFundamentalMatrix(matchedPoints1
,matchedPoints2
,Name,Value
)
Use estimateEssentialMatrix
when
you know the camera intrinsics. You can obtain the intrinsics using
the Camera Calibrator app.
Otherwise, you can use the estimateFundamentalMatrix
function
that does not require camera intrinsics. Note that the fundamental
matrix cannot be estimated from coplanar world points.
[1] Hartley, R., A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2003.
[2] Rousseeuw, P., A. Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, 1987.
[3] Torr, P. H. S., and A. Zisserman, MLESAC: A New Robust Estimator with Application to Estimating Image Geometry, Computer Vision and Image Understanding, 2000.
detectFASTFeatures
| detectHarrisFeatures
| detectMinEigenFeatures
| detectMSERFeatures
| detectORBFeatures
| detectSURFFeatures
| epipolarline
| estimateUncalibratedRectification
| extractFeatures
| matchFeatures
| ORBPoints
| relativeCameraPose