Compute partial dependence
uses additional options specified by one or more name-value pair arguments. For example,
if you specify pd
= partialDependence(___,Name,Value
)'UseParallel','true'
, the
partialDependence
function uses parallel computing to perform the
partial dependence calculations.
partialDependence
uses a predict
function to
predict responses or scores. partialDependence
chooses the proper
predict
function according to Mdl
and runs
predict
with its default settings. For details about each
predict
function, see the predict
functions in the
following two tables. If Mdl
is a tree-based model (not including a
boosted ensemble of trees), then partialDependence
uses the weighted
traversal algorithm instead of the predict
function. For details, see Weighted Traversal Algorithm.
Regression Model Object
Model Type | Full or Compact Regression Model Object | Function to Predict Responses |
---|---|---|
Bootstrap aggregation for ensemble of decision trees | CompactTreeBagger | predict |
Bootstrap aggregation for ensemble of decision trees | TreeBagger | predict |
Ensemble of regression models | RegressionEnsemble , RegressionBaggedEnsemble , CompactRegressionEnsemble | predict |
Gaussian kernel regression model using random feature expansion | RegressionKernel | predict |
Gaussian process regression | RegressionGP , CompactRegressionGP | predict |
Generalized linear mixed-effect model | GeneralizedLinearMixedModel | predict |
Generalized linear model | GeneralizedLinearModel , CompactGeneralizedLinearModel | predict |
Linear mixed-effect model | LinearMixedModel | predict |
Linear regression | LinearModel , CompactLinearModel | predict |
Linear regression for high-dimensional data | RegressionLinear | predict |
Nonlinear regression | NonLinearModel | predict |
Regression tree | RegressionTree , CompactRegressionTree | predict |
Support vector machine regression | RegressionSVM , CompactRegressionSVM | predict |
Classification Model Object
Model Type | Full or Compact Classification Model Object | Function to Predict Labels and Scores |
---|---|---|
Discriminant analysis classifier | ClassificationDiscriminant ,
CompactClassificationDiscriminant | predict |
Multiclass model for support vector machines or other classifiers | ClassificationECOC , CompactClassificationECOC | predict |
Ensemble of learners for classification | ClassificationEnsemble , CompactClassificationEnsemble ,
ClassificationBaggedEnsemble | predict |
Gaussian kernel classification model using random feature expansion | ClassificationKernel | predict |
k-nearest neighbor classifier | ClassificationKNN | predict |
Linear classification model | ClassificationLinear | predict |
Multiclass naive Bayes model | ClassificationNaiveBayes , CompactClassificationNaiveBayes | predict |
Support vector machine classifier for one-class and binary classification | ClassificationSVM , CompactClassificationSVM | predict |
Binary decision tree for multiclass classification | ClassificationTree , CompactClassificationTree | predict |
Bagged ensemble of decision trees | TreeBagger , CompactTreeBagger | predict |
plotPartialDependence
computes and plots partial dependence values. The
function can also create individual conditional
expectation (ICE) plots.
[2] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. New York, NY: Springer New York, 2009.
lime
| oobPermutedPredictorImportance
| plotPartialDependence
| predictorImportance (RegressionEnsemble)
| predictorImportance (RegressionTree)
| relieff
| sequentialfs