Class: RegressionGP
Cross-validate Gaussian process regression model
cvMdl = crossval(gprMdl)
cvmdl = crossval(gprMdl,Name,Value)
returns
the partitioned model, cvMdl
= crossval(gprMdl
)cvMdl
, built from the
Gaussian process regression (GPR) model, gprMdl
,
using 10-fold cross validation.
cvmdl
is a RegressionPartitionedModel
object,
and gprMdl
is a RegressionGP
(full)
object.
returns
the partitioned model, cvmdl
= crossval(gprMdl
,Name,Value
)cvmdl
, with additional
options specified by one or more Name,Value
pair
arguments. For example, you can specify the number of folds or the
fraction of the data to use for testing.
You can only use one of the name-value pair arguments at a time.
You cannot compute the prediction intervals for a cross-validated model.
Alternatively, you can train a cross-validated model using the
related name-value pair arguments in fitrgp
.
If you supply a custom 'ActiveSet'
in the
call to fitrgp
, then you cannot cross validate
the GPR model.
[1] Harrison, D. and D.L., Rubinfeld. "Hedonic prices and the demand for clean air." J. Environ. Economics & Management. Vol.5, 1978, pp. 81-102.
[2] Warwick J. N., T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford. "The Population Biology of Abalone (_Haliotis_ species) in Tasmania. I. Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait." Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288), 1994.
[3] S. Waugh. "Extending and Benchmarking Cascade-Correlation", PhD Thesis. Computer Science Department, University of Tasmania, 1995.
[4] Lichman, M. UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2013. http://archive.ics.uci.edu/ml.
fitrgp
| kfoldLoss
| kfoldPredict
| RegressionGP
| RegressionPartitionedModel