Cross-validate multiclass error-correcting output codes (ECOC) model
returns a cross-validated (partitioned) multiclass error-correcting output codes (ECOC)
model (CVMdl
= crossval(Mdl
)CVMdl
) from a trained ECOC model (Mdl
). By
default, crossval
uses 10-fold cross-validation on the training data to
create CVMdl
, a ClassificationPartitionedECOC
model.
returns a partitioned ECOC model with additional options specified by one or more name-value
pair arguments. For example, you can specify the number of folds or a holdout sample
proportion.CVMdl
= crossval(Mdl
,Name,Value
)
Instead of training an ECOC model and then cross-validating it, you can create a
cross-validated ECOC model directly by using fitcecoc
and specifying one of these name-value pair arguments:
'CrossVal'
, 'CVPartition'
,
'Holdout'
, 'Leaveout'
, or
'KFold'
.
ClassificationECOC
| ClassificationPartitionedECOC
| CompactClassificationECOC
| cvpartition
| fitcecoc
| statset