Light-Emitting Diode
Exponential light-emitting diode with optical power output port
Description
The Light-Emitting Diode block represents a light-emitting
diode as an exponential diode in series with a current sensor. The optical power presented at the
signal port W is equal to the product of the current flowing through the diode and the
Optical power per unit current parameter value.
The exponential diode model provides the following relationship between the diode current
I and the diode voltage V:
where:
q is the elementary charge on an electron (1.602176e–19
Coulombs).
k is the Boltzmann constant (1.3806503e–23 J/K).
N is the emission coefficient.
IS is the saturation current.
Tm1 is the temperature at which the diode
parameters are specified, as defined by the Measurement temperature
parameter value.
When (qV /
NkTm1) >
80, the block replaces with (qV /
NkTm1 –
79)e80, which matches the gradient of the diode current at (qV /
NkTm1) =
80 and extrapolates linearly. When (qV /
NkTm1) <
–79, the block replaces with (qV /
NkTm1 +
80)e–79, which also matches the gradient and extrapolates linearly. Typical electrical
circuits do not reach these extreme values. The block provides this linear extrapolation to help
convergence when solving for the constraints during simulation.
When you select Use parameters IS and N
for the
Parameterization parameter, you specify the diode in terms of the
Saturation current IS and Emission coefficient N
parameters. When you select Use I-V curve data points
for the
Parameterization parameter, you specify two voltage and current measurement
points on the diode I-V curve and the block derives the IS and
N values. When you specify current and voltage measurements, the block
calculates IS and N as follows:
where:
The exponential diode model provides the option to include a junction capacitance:
When you select Fixed or zero junction capacitance
for the
Junction capacitance parameter, the capacitance is fixed.
When you select Use parameters CJO, VJ, M & FC
for the
Junction capacitance parameter, the block uses the coefficients
CJO, VJ, M, and
FC to calculate a junction capacitance that depends on the junction
voltage.
When you select Use C-V curve data points
for the
Junction capacitance parameter, the block uses three capacitance values
on the C-V capacitance curve to estimate CJO, VJ, and
M and uses these values with the specified value of FC
to calculate a junction capacitance that depends on the junction voltage. The block calculates
CJO, VJ, and M as follows:
where:
VR1,
VR2, and
VR3 are the values in the Reverse bias
voltages [VR1 VR2 VR3] vector.
C1,
C2, and
C3 are the values in the Corresponding
capacitances [C1 C2 C3] vector.
It is not possible to estimate FC reliably from tabulated
data, so you must specify its value using the Capacitance coefficient FC
parameter. In the absence of suitable data for this parameter, use a typical value of
0.5.
The reverse bias voltages (defined as positive values) should satisfy
VR3 >
VR2 >
VR1. This means that the capacitances should
satisfy C1 >
C2 >
C3 as reverse bias widens the depletion region and
hence reduces capacitance. Violating these inequalities results in an error. Voltages
VR2 and
VR3 should be well away from the Junction potential
VJ. Voltage VR1 should be less
than the Junction potential VJ, with a typical value for
VR1 being 0.1 V.
The voltage-dependent junction is defined in terms of the capacitor charge storage
Qj as:
For V <
FC·VJ:
For V ≥
FC·VJ:
where:
These equations are the same as used in [2], except that the temperature
dependence of VJ and FC is not modeled. This model does
not include the diffusion capacitance term that affects performance for high frequency switching
applications.
The Light-Emitting Diode block contains several options for modeling the
dependence of the diode current-voltage relationship on the temperature during simulation.
Temperature dependence of the junction capacitance is not modeled, this being a much smaller
effect. For details, see the Diode reference page.
Thermal Port
The block has an optional thermal port, hidden by default. To expose the thermal port,
right-click the block in your model, and then from the context menu select
> >
. This action displays the thermal port
H on the block icon, and exposes the Thermal
Port parameters.
Use the thermal port to simulate the effects of generated heat and device temperature. For
more information on using thermal ports and on the Thermal Port
parameters, see Simulating Thermal Effects in Semiconductors.
Assumptions and Limitations
When you select Use I-V curve data points
for the
Parameterization parameter, choose a pair of voltages near the diode
turn-on voltage. Typically this is in the range from 0.05 to 1 Volt. Using values outside of
this region may lead to numerical issues and poor estimates for IS and
N.
You may need to use nonzero ohmic resistance and junction capacitance values to prevent
numerical simulation issues, but the simulation may run faster with these values set to zero.
Ports
Output
expand all
W
— Optical output power
physical signal
Physical signal port associated with the optical output power.
Conserving
expand all
+
— Positive terminal
electrical
Electrical conserving port associated with the anode.
-
— Negative terminal
electrical
Electrical conserving port associated with the cathode.
Parameters
expand all
Main
Optical power per unit current
— Optical power per unit current
0.005
W/A
(default)
Amount of optical power the light-emitting diode generates per unit of current flowing
through the diode.
Parameterization
— Model parameterization
Use I-V curve data points
(default) | Use parameters IS and N
Select one of the following methods for model parameterization:
Currents [I1 I2]
— Vector of current values at two points
[ 0.0017 0.003 ]
A
(default)
A vector of the current values at the two points on the diode I-V curve that the block
uses to calculate IS and N.
Dependencies
This parameter is visible only when you select Use I-V curve data
points
for the Parameterization parameter.
Voltages [V1 V2]
— Vector of voltage values at two points
[ 0.9 1.05 ]
V
(default)
A vector of the voltage values at the two points on the diode I-V curve that the block
uses to calculate IS and N.
Dependencies
This parameter is visible only when you select Use I-V curve data
points
for the Parameterization parameter.
Saturation current, IS
— Saturation current
5e-5
A
(default)
The magnitude of the current that the ideal diode equation approaches asymptotically for
very large reverse bias levels.
Dependencies
This parameter is visible only when you select Use parameters IS and
N
for the Parameterization parameter.
Emission coefficient, N
— Emission coefficient
10
(default)
The diode emission coefficient or ideality factor.
Dependencies
This parameter is visible only when you select Use parameters IS and
N
for the Parameterization parameter.
Ohmic resistance, RS
— Series diode connection resistance
0.1
Ohm
(default)
The series diode connection resistance.
Measurement temperature
— Measurement temperature
25
degC
(default)
The temperature at which IS or the I-V curve was measured.
Junction Capacitance
Junction capacitance
— Junction capacitance
Fixed or zero junction capacitance
(default) | Use C-V curve data points
| Use parameters CJ0, VJ, M & FC
Select one of the following options for modeling the junction capacitance:
Fixed or zero junction capacitance
— Model the
junction capacitance as a fixed value.
Use C-V curve data points
— Specify measured data
at three points on the diode C-V curve.
Use parameters CJ0, VJ, M & FC
— Specify
zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias
depletion capacitance coefficient.
Zero-bias junction capacitance, CJ0
— Zero-bias junction capacitance
20
pF
(default)
The value of the capacitance placed in parallel with the exponential diode term.
Dependencies
This parameter is visible only when you select Fixed or zero junction
capacitance
or Use parameters CJ0, VJ, M & FC
for the Junction capacitance parameter.
Reverse bias voltages [VR1 VR2 VR3]
— Reverse bias voltages
[ 0.1 10 100 ]
V
(default)
A vector of the reverse bias voltage values at the three points on the diode C-V curve
that the block uses to calculate CJ0, VJ, and
M.
Dependencies
This parameter is visible only when you select Use C-V curve data
points
for the Junction capacitance parameter.
Corresponding capacitances [C1 C2 C3]
— Corresponding capacitances
[ 15 10 2 ]
pF
(default)
A vector of the capacitance values at the three points on the diode C-V curve that the
block uses to calculate CJ0, VJ, and
M.
Dependencies
This parameter is visible only when you select Use C-V curve data
points
for the Junction capacitance parameter.
Junction potential, VJ
— Junction potential
1
V
(default)
The junction potential. This parameter is only visible when you select Use
parameters CJ0, VJ, M & FC
for the Junction
capacitance parameter.
Dependencies
This parameter is visible only when you select Use parameters CJ0, VJ, M
& FC
for the Junction capacitance parameter.
Grading coefficient, M
— Grading coefficient
0.5
(default)
The grading coefficient.
Dependencies
This parameter is visible only when you select Use parameters CJ0, VJ, M
& FC
for the Junction capacitance parameter.
Capacitance coefficient, FC
— Capacitance coefficient
0.5
(default)
Fitting coefficient that quantifies the decrease of the depletion capacitance with
applied voltage.
Dependencies
This parameter is visible only when you select Use C-V curve data
points
or Use parameters CJ0, VJ, M & FC
for
the Junction capacitance parameter.
Temperature Dependence
Parameterization
— Temperature dependence parameterization
None — Simulate at parameter measurement
temperature
(default) | Use an I-V data point at second measurement temperature
T2
| Specify saturation current at second measurement temperature
T2
| Specify the energy gap EG
Select one of the following methods for temperature dependence parameterization:
None — Simulate at parameter measurement temperature
— Temperature dependence is not modeled, or the model is simulated at the
measurement temperature Tm1 (as specified by the
Measurement temperature parameter on the Main
tab). This is the default method.
Use an I-V data point at second measurement temperature T2
— If you select this option, you specify a second measurement temperature
Tm2, and the current and voltage values at this
temperature. The model uses these values, along with the parameter values at the first
measurement temperature Tm1, to calculate the
energy gap value.
Specify saturation current at second measurement temperature
T2
— If you select this option, you specify a second measurement
temperature Tm2, and saturation current value at
this temperature. The model uses these values, along with the parameter values at the first
measurement temperature Tm1, to calculate the
energy gap value.
Specify the energy gap EG
— Specify the energy gap
value directly.
Current I1 at second measurement temperature
— Current I1 at second measurement temperature
0.0034
A
(default)
Specify the diode current I1 value when the voltage is
V1 at the second measurement temperature.
Dependencies
This parameter is visible only when you select Use an I-V data point at
second measurement temperature T2
for the
Parameterization parameter.
Voltage V1 at second measurement temperature
— Voltage V1 at second measurement temperature
1.05
V
(default)
Specify the diode voltage V1 value when the current is
I1 at the second measurement temperature.
Dependencies
This parameter is visible only when you select Use an I-V data point at
second measurement temperature T2
for the
Parameterization parameter.
Saturation current, IS, at second measurement temperature
— Saturation current, IS, at second measurement temperature
1.8e-4
A
(default)
Specify the saturation current IS value at the second measurement
temperature.
Dependencies
This parameter is visible only when you select Specify saturation current
at second measurement temperature T2
for the
Parameterization parameter.
Second measurement temperature
— Second measurement temperature
125
degC
(default)
Specify the value for the second measurement temperature.
Dependencies
This parameter is visible only when you select Use an I-V data point at
second measurement temperature T2
or Specify saturation current
at second measurement temperature T2
for the
Parameterization parameter.
Energy gap parameterization
— Energy gap parameterization
Use nominal value for silicon (EG=1.11eV)
(default) | Use nominal value for 4H-SiC silicon carbide
(EG=3.23eV)
| Use nominal value for 6H-SiC silicon carbide
(EG=3.00eV)
| Use nominal value for germanium (EG=0.67eV)
| Use nominal value for gallium arsenide (EG=1.43eV)
| Use nominal value for selenium (EG=1.74eV)
| Use nominal value for Schottky barrier diodes
(EG=0.69eV)
| Specify a custom value
Select a value for the energy gap from a list of predetermined options, or specify a
custom value:
Use nominal value for silicon (EG=1.11eV)
— This is
the default.
Use nominal value for 4H-SiC silicon carbide (EG=3.23eV)
Use nominal value for 6H-SiC silicon carbide (EG=3.00eV)
Use nominal value for germanium (EG=0.67eV)
Use nominal value for gallium arsenide (EG=1.43eV)
Use nominal value for selenium (EG=1.74eV)
Use nominal value for Schottky barrier diodes (EG=0.69eV)
Specify a custom value
— If you select this option,
the Energy gap, EG parameter appears in the dialog box, to let you
specify a custom value for EG.
Dependencies
This parameter is visible only when you select Specify the energy gap
EG
for the Parameterization parameter.
Energy gap, EG
— Energy gap
1.11
eV
(default)
Specify a custom value for the energy gap, EG.
Dependencies
This parameter is visible only when you select Specify a custom
value
for the Energy gap parameterization
parameter.
Saturation current temperature exponent parameterization
— Saturation current temperature exponent parameterization
Use nominal value for pn-junction diode
(XTI=3)
(default) | Use nominal value for Schottky barrier diode (XTI=2)
| Specify a custom value
Select one of the following options to specify the saturation current temperature
exponent value:
Use nominal value for pn-junction diode (XTI=3)
—
This is the default.
Use nominal value for Schottky barrier diode (XTI=2)
Specify a custom value
— If you select this option,
the Saturation current temperature exponent, XTI parameter appears in
the dialog box, to let you specify a custom value for XTI.
Saturation current temperature exponent, XTI
— Saturation current temperature exponent
3
(default)
Specify a custom value for the saturation current temperature exponent,
XTI.
Dependencies
This parameter is visible only when you select Specify a custom
value
for the Saturation current temperature exponent
parameterization parameter.
Device simulation temperature
— Device simulation temperature
25
degC
(default)
Specify the value for the temperature Ts, at
which the device is to be simulated.
References
[1] H. Ahmed and P.J. Spreadbury. Analogue and digital
electronics for engineers. 2nd Edition, Cambridge University Press,
1984.
[2] G. Massobrio and P. Antognetti. Semiconductor Device
Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Introduced in R2008a