Optocoupler
Behavioral model of optocoupler as LED, current sensor, and controlled current
source
Description
This block represents an optocoupler using a model that consists of the following components:
The output-side current flows from the collector junction to the emitter
junction. It has a value of
CTR·Id, where
CTR is the Current transfer ratio parameter value and
Id is the diode current.
Use the Optocoupler block to interface two electrical
circuits without making a direct electrical connection. A common reason for doing this is that
the two circuits work at very different voltage levels.
Note
Each electrical circuit must have its own Electrical
Reference block.
If the output circuit is a phototransistor, typical values for the Current
transfer ratio parameter are 0.1 to 0.5. If the output stage consists of a Darlington
pair, the parameter value can be much higher than this. The Current transfer
ratio value also varies with the light-emitting diode current, but this effect is not
modeled by the Photodiode block.
Some manufacturers provide a maximum data rate for optocouplers. In practice, the maximum
data rate depends on the following factors:
The Optocoupler block only lets you define the
capacitance on the light-emitting diode. You can use the Junction
capacitance parameter to add your own capacitance across the collector and emitter
connections.
The Optocoupler block lets you model temperature dependence
of the underlying diode. For details, see the Diode reference page.
Thermal Port
The block has an optional thermal port, hidden by default. To expose the thermal port,
right-click the block in your model, and then from the context menu select
> >
. This action displays the thermal port
H on the block icon, and exposes the Thermal
Port parameters.
Use the thermal port to simulate the effects of generated heat and device temperature. For
more information on using thermal ports and on the Thermal Port
parameters, see Simulating Thermal Effects in Semiconductors.
Assumptions and Limitations
The output side is modeled as a controlled current source. As such, it only correctly
approximates a bipolar transistor operating in its normal active region. To create a more
detailed model, connect the Optocoupler output directly to the
base of an NPN Bipolar Transistor block, and set the parameters
to maintain a correct overall value for the current transfer ratio. If you need to connect
optocouplers in series, use this approach to avoid the invalid topology of two current sources
in series.
The temperature dependence of the forward current transfer ratio is not modeled. Typically
the temperature dependence of this parameter is much less than that of the optical diode I-V
characteristic.
You may need to use nonzero ohmic resistance and junction capacitance values to prevent
numerical simulation issues, but the simulation may run faster with these values set to zero.
Ports
Conserving
expand all
+
— Positive terminal
electrical
Electrical conserving port associated with the diode positive terminal
-
— Negative terminal
electrical
Electrical conserving port associated with the diode negative terminal
C
— Transistor collector terminal
electrical
Electrical conserving port associated with the transistor collector terminal
E
— Transistor emitter terminal
electrical
Electrical conserving port associated with the transistor emitter terminal
Parameters
expand all
Main
Current transfer ratio
— Current transfer ratio
0.2
(default)
The output current flowing from the transistor collector to emitter junctions is equal
to the product of the current transfer ratio and the current flowing in the light-emitting
diode.
Diode parameterization
— Model parameterization
Use I-V curve data points
(default) | Use parameters IS and N
Select one of the following methods for model parameterization:
Currents [I1 I2]
— Vector of current values at two points
[.001, .015]
A
(default)
A vector of the current values at the two points on the diode I-V curve that the block
uses to calculate IS and N.
Dependencies
This parameter is visible only when you select Use I-V curve data
points
for the Diode parameterization parameter.
Voltages [V1 V2]
— Vector of voltage values at two points
[.9, 1.05]
V
(default)
A vector of the voltage values at the two points on the diode I-V curve that the block
uses to calculate IS and N.
Dependencies
This parameter is visible only when you select Use I-V curve data
points
for the Diode parameterization parameter.
Ohmic resistance, RS
— Ohmic resistance
0.1
Ohm
(default)
The series diode connection resistance.
Saturation current, IS
— Saturation current
1e-10
A
(default)
The magnitude of the current that the ideal diode equation approaches asymptotically for
very large reverse bias levels.
Dependencies
This parameter is visible only when you select Use parameters IS and
N
for the Diode parameterization parameter.
Measurement temperature
— Measurement temperature
25
°C
(default)
The temperature at which IS or the I-V curve was measured. The default value is
25
°C.
Emission coefficient, N
— Diode emission coefficient
2
(default)
The diode emission coefficient or ideality factor.
Dependencies
This parameter is visible only when you select Use parameters IS and
N
for the Diode parameterization parameter.
Junction Capacitance
Capacitance
— Modeling diode junction capacitance
Fixed or zero junction capacitance
(default) | Use C-V curve data points
| Use parameters CJ0, VJ, M & FC
Select one of the following options for modeling the diode junction capacitance:
Fixed or zero junction capacitance
— Model the
junction capacitance as a fixed value.
Use C-V curve data points
— Specify measured data
at three points on the diode C-V curve.
Use parameters CJ0, VJ, M & FC
— Specify
zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias
depletion capacitance coefficient.
Junction capacitance
— Diode junction capacitance
5
pF
(default)
Fixed junction capacitance value.
Dependencies
This parameter is visible only when you select Fixed or zero junction
capacitance
for the Capacitance parameter.
Zero-bias junction capacitance, CJ0
— Zero-bias junction capacitance
5
pF
(default)
The value of the capacitance placed in parallel with the exponential diode term.
Dependencies
This parameter is visible only when you select Use parameters CJ0, VJ, M
& FC
for the Capacitance parameter.
Junction potential, VJ
— Junction potential
1
V
(default)
The junction potential.
Dependencies
This parameter is visible only when you select Use parameters CJ0, VJ, M
& FC
for the Capacitance parameter.
Grading coefficient, M
— Grading coefficient
0.5
(default)
The coefficient that quantifies the grading of the junction.
Dependencies
This parameter is visible only when you select Use parameters CJ0, VJ, M
& FC
for the Capacitance parameter.
Reverse bias voltages [VR1 VR2 VR3]
— Vector of reverse bias voltages
[.1, 10, 100]
V
(default)
A vector of the reverse bias voltage values at the three points on the diode C-V curve
that the block uses to calculate CJ0, VJ, and
M.
Dependencies
This parameter is visible only when you select Use C-V curve data
points
for the Capacitance parameter.
Corresponding capacitances [C1 C2 C3]
— Vector of corresponding capacitances
[3.5, 1, .4]
pF
(default)
A vector of the capacitance values at the three points on the diode C-V curve that the
block uses to calculate CJ0, VJ, and
M.
Dependencies
This parameter is visible only when you select Use C-V curve data
points
for the Capacitance parameter.
Capacitance coefficient, FC
— Fitting capacitance coefficient
0.5
(default)
Fitting coefficient that quantifies the decrease of the depletion capacitance with
applied voltage.
Dependencies
This parameter is visible only when you select Use C-V curve data
points
or Use parameters CJ0, VJ, M & FC
for
the Capacitance parameter.
Temperature Dependence
Parameterization
— Temperature dependence parameterization
None — Simulate at parameter measurement
temperature
(default) | Use an I-V data point at second measurement temperature
T2
| Specify saturation current at second measurement temperature
T2
| Specify the energy gap EG
Select one of the following methods for temperature dependence parameterization:
None — Simulate at parameter measurement temperature
— Temperature dependence is not modeled, or the model is simulated at the
measurement temperature Tm1 (as specified by the
Measurement temperature parameter on the Main
tab). This is the default method.
Use an I-V data point at second measurement temperature T2
— If you select this option, you specify a second measurement temperature
Tm2, and the current and voltage values at this
temperature. The model uses these values, along with the parameter values at the first
measurement temperature Tm1, to calculate the
energy gap value.
Specify saturation current at second measurement temperature
T2
— If you select this option, you specify a second measurement
temperature Tm2, and saturation current value at
this temperature. The model uses these values, along with the parameter values at the first
measurement temperature Tm1, to calculate the
energy gap value.
Specify the energy gap EG
— Specify the energy gap
value directly.
Current I1 at second measurement temperature
— Current I1 at second measurement temperature
0.029
A
(default)
Specify the diode current I1 value when the voltage is
V1 at the second measurement temperature.
Dependencies
This parameter is visible only when you select Use an I-V data point at
second measurement temperature T2
for the
Parameterization parameter.
Voltage V1 at second measurement temperature
— Voltage V1 at second measurement temperature
1.05
V
(default)
Specify the diode voltage V1 value when the current is
I1 at the second measurement temperature.
Dependencies
This parameter is visible only when you select Use an I-V data point at
second measurement temperature T2
for the
Parameterization parameter.
Saturation current, IS, at second measurement temperature
— Saturation current, IS, at second measurement temperature
1.8e-8
A
(default)
Specify the saturation current IS value at the second measurement
temperature.
Dependencies
This parameter is visible only when you select Specify saturation current
at second measurement temperature T2
for the
Parameterization parameter.
Second measurement temperature
— Second measurement temperature
125
°C
(default)
Specify the value for the second measurement temperature.
Dependencies
This parameter is visible only when you select Use an I-V data point at
second measurement temperature T2
or Specify saturation current
at second measurement temperature T2
for the
Parameterization parameter.
Energy gap parameterization
— Energy gap parameterization
Use nominal value for silicon
(EG=1.11eV)
(default) | Use nominal value for 4H-SiC silicon carbide
(EG=3.23eV)
| Use nominal value for 6H-SiC silicon carbide
(EG=3.00eV)
| Use nominal value for germanium (EG=0.67eV)
| Use nominal value for gallium arsenide (EG=1.43eV)
| Use nominal value for selenium (EG=1.74eV)
| Use nominal value for Schottky barrier diodes
(EG=0.69eV)
| Specify a custom value
Select a value for the energy gap from a list of predetermined options, or specify a
custom value:
Use nominal value for silicon (EG=1.11eV)
— This is
the default.
Use nominal value for 4H-SiC silicon carbide (EG=3.23eV)
Use nominal value for 6H-SiC silicon carbide (EG=3.00eV)
Use nominal value for germanium (EG=0.67eV)
Use nominal value for gallium arsenide (EG=1.43eV)
Use nominal value for selenium (EG=1.74eV)
Use nominal value for Schottky barrier diodes (EG=0.69eV)
Specify a custom value
— If you select this option,
the Energy gap, EG parameter appears in the dialog box, to let you
specify a custom value for EG.
Dependencies
This parameter is visible only when you select Specify the energy gap
EG
for the Parameterization parameter.
Energy gap, EG
— Energy gap
1.11
eV
(default)
Specify a custom value for the energy gap, EG.
Dependencies
This parameter is visible only when you select Specify a custom
value
for the Energy gap parameterization
parameter.
Saturation current temperature exponent parameterization
— Saturation current temperature exponent parameterization
Use nominal value for pn-junction diode
(XTI=3)
(default) | Use nominal value for Schottky barrier diode (XTI=2)
| Specify a custom value
Select one of the following options to specify the saturation current temperature
exponent value:
Use nominal value for pn-junction diode (XTI=3)
—
This is the default.
Use nominal value for Schottky barrier diode (XTI=2)
Specify a custom value
— If you select this option,
the Saturation current temperature exponent, XTI parameter appears in
the dialog box, to let you specify a custom value for XTI.
Saturation current temperature exponent, XTI
— Saturation current temperature exponent
3
(default)
Specify a custom value for the saturation current temperature exponent,
XTI.
Dependencies
This parameter is visible only when you select Specify a custom
value
for the Saturation current temperature exponent
parameterization parameter.
Device simulation temperature
— Device simulation temperature
25
°C
(default)
Specify the value for the temperature Ts, at
which the device is to be simulated.
References
[1] G. Massobrio and P. Antognetti. Semiconductor Device
Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
[2] H. Ahmed and P.J. Spreadbury. Analogue and digital
electronics for engineers. 2nd Edition, Cambridge University Press,
1984.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Introduced in R2008a