pdeplot3D

Plot solution or surface mesh for 3-D problem

Description

example

pdeplot3D(model,'ColorMapData',results.NodalSolution) plots the solution at nodal locations as colors on the surface of the 3-D geometry specified in model.

example

pdeplot3D(model,'ColorMapData',results.Temperature) plots the temperature at nodal locations for a 3-D thermal analysis model.

example

pdeplot3D(model,'ColorMapData',results.VonMisesStress,'Deformation',results.Displacement) plots the von Mises stress and shows the deformed shape for a 3-D structural analysis model.

example

pdeplot3D(model) plots the surface mesh specified in model.

pdeplot3D(mesh) plots the mesh defined as a Mesh property of a 3-D model object of type PDEModel.

pdeplot3D(nodes,elements) plots the mesh defined by nodes and elements.

example

pdeplot3D(___,Name,Value) plots the surface mesh, the data at nodal locations, or both the mesh and data, depending on the Name,Value pair arguments. Use any arguments from the previous syntaxes.

h = pdeplot3D(___) returns a handle to a plot, using any of the previous syntaxes.

Examples

collapse all

Plot a PDE solution on the geometry surface. First, create a PDE model and import a 3-D geometry file. Specify boundary conditions and coefficients. Mesh the geometry and solve the problem.

model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet','Face',[1:4],'u',0);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',2);
generateMesh(model);
results = solvepde(model)
results = 
  StationaryResults with properties:

    NodalSolution: [12691x1 double]
       XGradients: [12691x1 double]
       YGradients: [12691x1 double]
       ZGradients: [12691x1 double]
             Mesh: [1x1 FEMesh]

Access the solution at the nodal locations.

u = results.NodalSolution;

Plot the solution u on the geometry surface.

pdeplot3D(model,'ColorMapData',u)

Solve a 3-D steady-state thermal problem.

Create a thermal model for this problem.

thermalmodel = createpde('thermal');

Import and plot the block geometry.

importGeometry(thermalmodel,'Block.stl'); 
pdegplot(thermalmodel,'FaceLabel','on','FaceAlpha',0.5)
axis equal

Assign material properties.

thermalProperties(thermalmodel,'ThermalConductivity',80);

Apply a constant temperature of 100 °C to the left side of the block (face 1) and a constant temperature of 300 °C to the right side of the block (face 3). All other faces are insulated by default.

thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults = 
  SteadyStateThermalResults with properties:

    Temperature: [12691x1 double]
     XGradients: [12691x1 double]
     YGradients: [12691x1 double]
     ZGradients: [12691x1 double]
           Mesh: [1x1 FEMesh]

The solver finds the temperatures and temperature gradients at the nodal locations. To access these values, use thermalresults.Temperature, thermalresults.XGradients, and so on. For example, plot temperatures at the nodal locations.

pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)

For a 3-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points specified by x, y, and z coordinates.

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the following 3-D geometry and include it in the model.

importGeometry(thermalmodel,'Block.stl'); 
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal

Assuming that this is a copper block, the thermal conductivity of the block is approximately 4W/(cmK).

thermalProperties(thermalmodel,'ThermalConductivity',4);

Apply a constant temperature of 373 K to the left side of the block (face 1) and a constant temperature of 573 K to the right side of the block (face 3).

thermalBC(thermalmodel,'Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);

Apply a heat flux boundary condition to the bottom of the block.

thermalBC(thermalmodel,'Face',4,'HeatFlux',-20);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults = 
  SteadyStateThermalResults with properties:

    Temperature: [12691x1 double]
     XGradients: [12691x1 double]
     YGradients: [12691x1 double]
     ZGradients: [12691x1 double]
           Mesh: [1x1 FEMesh]

Evaluate heat flux at the nodal locations.

[qx,qy,qz] = evaluateHeatFlux(thermalresults);

figure
pdeplot3D(thermalmodel,'FlowData',[qx qy qz])

Create a grid specified by x, y, and z coordinates, and evaluate heat flux to the grid.

[X,Y,Z] = meshgrid(1:26:100,1:6:20,1:11:50);

[qx,qy,qz] = evaluateHeatFlux(thermalresults,X,Y,Z);

Reshape the qx, qy, and qz vectors, and plot the resulting heat flux.

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:) Y(:) Z(:)]';
[qx,qy,qz] = evaluateHeatFlux(thermalresults,querypoints);

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)

Create a structural analysis model for a 3-D problem.

structuralmodel = createpde('structural','static-solid');

Import the geometry and plot it.

importGeometry(structuralmodel,'SquareBeam.STL');
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
                                     'YoungsModulus',210E3);

Specify that face 6 is a fixed boundary.

structuralBC(structuralmodel,'Face',6,'Constraint','fixed');

Specify the surface traction for face 5.

structuralBoundaryLoad(structuralmodel,'Face',5,'SurfaceTraction',[0;0;-2]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Plot the deformed shape with the von Mises stress using the default scale factor. By default, pdeplot3D internally determines the scale factor based on the dimensions of the geometry and the magnitude of deformation.

figure    
pdeplot3D(structuralmodel,'ColorMapData',structuralresults.VonMisesStress, ...
                          'Deformation',structuralresults.Displacement)

Plot the same results with the scale factor 500.

figure
pdeplot3D(structuralmodel,'ColorMapData',structuralresults.VonMisesStress, ...
                          'Deformation',structuralresults.Displacement, ...
                          'DeformationScaleFactor',500)

Plot the same results without scaling.

figure
pdeplot3D(structuralmodel,'ColorMapData',structuralresults.VonMisesStress)

Evaluate the von Mises stress in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
                                     'PoissonsRatio',0.3, ...
                                     'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

Evaluate the von Mises stress in the beam.

vmStress = evaluateVonMisesStress(structuralresults);

Plot the von Mises stress for the last time-step.

figure
pdeplot3D(structuralmodel,'ColorMapData',vmStress(:,end))
title('von Mises Stress in the Beam for the Last Time-Step')

Create a PDE model, include the geometry, and generate a mesh.

model = createpde;
importGeometry(model,'Tetrahedron.stl');
mesh = generateMesh(model,'Hmax',20,'GeometricOrder','linear');

Plot the surface mesh.

pdeplot3D(model)

Alternatively, you can plot a mesh by using mesh as an input argument.

pdeplot3D(mesh)

Another approach is to use the nodes and elements of the mesh as input arguments for pdeplot3D.

pdeplot3D(mesh.Nodes,mesh.Elements)

Display the node labels on the surface of a simple mesh.

pdeplot3D(model,'NodeLabels','on')
view(101,12)

Display the element labels.

pdeplot3D(model,'ElementLabels','on')
view(101,12)

Input Arguments

collapse all

Model object, specified as a PDEModel object, ThermalModel object, or StructuralModel object.

Example: model = createpde(1)

Example: thermalmodel = createpde('thermal','steadystate')

Example: structuralmodel = createpde('structural','static-solid')

Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model.Mesh

Nodal coordinates, specified as a 3-by-NumNodes matrix. NumNodes is the number of nodes.

Element connectivity matrix in terms of the node IDs, specified as a 4-by-NumElements or 10-by-NumElements matrix. Linear meshes contain only corner nodes. For linear meshes, the connectivity matrix has four nodes per 3-D element. Quadratic meshes contain corner nodes and nodes in the middle of each edge of an element. For quadratic meshes, the connectivity matrix has 10 nodes per 3-D element.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: pdeplot3D(model,'NodeLabels','on')

Data to plot as a colored surface, specified as the comma-separated pair consisting of 'ColorMapData' and a column vector with the number of elements that equals the number of points in the mesh. Typically, this data is the solution returned by solvepde for a scalar PDE problem and a component of the solution for a multicomponent PDE system.

Example: 'ColorMapData',results.NodalSolution

Example: 'ColorMapData',results.NodalSolution(:,1)

Data Types: double

Data for the quiver plot, specified as the comma-separated pair consisting of 'FlowData' and an M-by-3 matrix, where M is the number of mesh nodes. FlowData contains the x, y, and z values of the field at the mesh points. Set FlowData as follows:

results = solvepde(model);
[cgradx,cgrady,cgradz] = evaluateCGradient(results);
pdeplot3D(model,'FlowData',[cgradx cgrady cgradz])

pdeplot3D plots the real part of complex data.

Example: 'FlowData',[cgradx cgrady cgradz]

Data Types: double

Indicator to show the mesh, specified as the comma-separated pair consisting of 'Mesh' and 'on' or 'off'. Specify 'on' to show the mesh in the plot.

Example: 'Mesh','on'

Data Types: char | string

Node labels, specified as the comma-separated pair consisting of 'NodeLabels' and 'off' or 'on'.

Example: 'NodeLabels','on'

Data Types: char | string

Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off' or 'on'.

Example: 'ElementLabels','on'

Data Types: char | string

Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of 'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency. The value 0 indicates complete transparency.

Example: 'FaceAlpha',0.5

Data Types: double

Deformed shape for structural analysis models, specified as the comma-separated pair consisting of 'Deformation' and the FEStruct object representing displacement values at nodes. The displacement FEStruct object is a property of StaticStructuralResults, TransientStructuralResults, and FrequencyStructuralResults.

Example: 'Deformation',results.Displacement

Scaling factor for plotting the deformed shape, specified as the comma-separated pair consisting of 'DeformationScaleFactor' and a positive number. Use this argument together with the Deformation name-value pair argument. The pdeplot3D function chooses the default value based on the geometry itself and on the magnitude of deformation.

Example: 'DeformationScaleFactor',1000

Data Types: double

Output Arguments

collapse all

Handles to graphics objects, returned as a vector.

Introduced in R2015a