Simulate linear models with uncertainty using Monte Carlo method
simsd
simulates linear models using
the Monte Carlo method. The command performs multiple simulations
using different values of the uncertain parameters of the model, and
different realizations of additive noise and simulation initial conditions. simsd
uses
Monte Carlo techniques to generate response uncertainty, whereas sim
generates the uncertainty using the
Gauss Approximation Formula.
simsd(
simulates
and plots the response of 10 perturbed realizations of the identified
model sys
,udata
)sys
. Simulation input data udata
is
used to compute the simulated response.
The parameters of the perturbed realizations of sys
are
consistent with the parameter covariance of the original model, sys
.
If sys
does not contain parameter covariance
information, the 10 simulated responses are identical. For information
about how the parameter covariance information is used to generate
the perturbed models, see Generating Perturbations of Identified Model.
simsd(
simulates
the system response using the simulation behavior specified in the
option set sys
,udata
,N
,opt
)opt
. Use opt
to
specify uncertainties in the initial conditions and include the effect
of additive disturbances.
The simulated responses are all identical if sys
does
not contain parameter covariance information, and you do not specify
additive noise or covariance values for initial states. You specify
these values in the AddNoise
and X0Covariance
options
of opt
.
getcov
| rsample
| showConfidence
| sim
| simsdOptions