If Deep Learning Toolbox™ does not provide the layer you require for your classification or regression problem, then you can define your own custom layer using this example as a guide. For a list of built-in layers, see List of Deep Learning Layers.
To define a custom deep learning layer, you can use the template provided in this example, which takes you through the following steps:
Name the layer – give the layer a name so that it can be used in MATLAB®.
Declare the layer properties – specify the properties of the layer and which parameters are learned during training.
Create a constructor function (optional) – specify how to construct the layer and initialize its properties. If you do not specify a constructor function, then at creation, the software initializes the Name
, Description
, and Type
properties with []
and sets the number of layer inputs and outputs to 1.
Create forward functions – specify how data passes forward through the layer (forward propagation) at prediction time and at training time.
Create a backward function (optional) – specify the derivatives of the loss with respect to the input data and the learnable parameters (backward propagation). If you do not specify a backward function, then the forward functions must support dlarray
objects.
To create a custom layer that supports code generation:
The layer must specify the pragma %#codegen
in the layer
definition.
The inputs of predict
must be:
Consistent in dimension. Each input should have the same number of dimensions.
Consistent in batch size. Each input should have the same batch size.
The outputs of predict
must be consistent in dimension and
batch size with the layer inputs.
Non-scalar properties must have type single, double, or character array.
Scalar properties must have type numeric, logical, or string.
Code generation supports intermediate layers with 2-D image input only.
This example shows how to create a PReLU layer, which is a layer with a learnable parameter and use it in a convolutional neural network. A PReLU layer performs a threshold operation, where for each channel, any input value less than zero is multiplied by a scalar learned at training time.[1] For values less than zero, a PReLU layer applies scaling coefficients to each channel of the input. These coefficients form a learnable parameter, which the layer learns during training.
This figure from [1] compares the ReLU and PReLU layer functions.
Copy the layer with learnable parameters template into a new file in MATLAB. This template outlines the structure of a layer with learnable parameters and includes the functions that define the layer behavior.
classdef myLayer < nnet.layer.Layer properties % (Optional) Layer properties. % Layer properties go here. end properties (Learnable) % (Optional) Layer learnable parameters. % Layer learnable parameters go here. end methods function layer = myLayer() % (Optional) Create a myLayer. % This function must have the same name as the class. % Layer constructor function goes here. end function [Z1, …, Zm] = predict(layer, X1, …, Xn) % Forward input data through the layer at prediction time and % output the result. % % Inputs: % layer - Layer to forward propagate through % X1, ..., Xn - Input data % Outputs: % Z1, ..., Zm - Outputs of layer forward function % Layer forward function for prediction goes here. end function [Z1, …, Zm, memory] = forward(layer, X1, …, Xn) % (Optional) Forward input data through the layer at training % time and output the result and a memory value. % % Inputs: % layer - Layer to forward propagate through % X1, ..., Xn - Input data % Outputs: % Z1, ..., Zm - Outputs of layer forward function % memory - Memory value for custom backward propagation % Layer forward function for training goes here. end function [dLdX1, …, dLdXn, dLdW1, …, dLdWk] = ... backward(layer, X1, …, Xn, Z1, …, Zm, dLdZ1, …, dLdZm, memory) % (Optional) Backward propagate the derivative of the loss % function through the layer. % % Inputs: % layer - Layer to backward propagate through % X1, ..., Xn - Input data % Z1, ..., Zm - Outputs of layer forward function % dLdZ1, ..., dLdZm - Gradients propagated from the next layers % memory - Memory value from forward function % Outputs: % dLdX1, ..., dLdXn - Derivatives of the loss with respect to the % inputs % dLdW1, ..., dLdWk - Derivatives of the loss with respect to each % learnable parameter % Layer backward function goes here. end end end
First, give the layer a name. In the first line of the class file, replace the
existing name myLayer
with codegenPreluLayer
and
add a comment describing the layer.
classdef codegenPreluLayer < nnet.layer.Layer % Example custom PReLU layer with codegen support. ... end
Next, rename the myLayer
constructor function (the first function
in the methods
section) so that it has the same name as the
layer.
methods function layer = codegenPreluLayer() ... end ... end
Save the layer class file in a new file named
codegenPreluLayer.m
. The file name must match the layer name.
To use the layer, you must save the file in the current folder or in a folder on the
MATLAB path.
Add the %#codegen
directive (or pragma) to your layer definition to indicate that you intend to generate code for this layer. Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during code generation.
classdef codegenPreluLayer < nnet.layer.Layer % Example custom PReLU layer with codegen support. %#codegen ... end
Declare the layer properties in the properties
section and declare
learnable parameters by listing them in the properties (Learnable)
section.
By default, custom intermediate layers have these properties:
Property | Description |
---|---|
Name |
Layer name, specified as a character vector or a string scalar.
To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train
a series network with the layer and Name is set to '' ,
then the software automatically assigns a name to the layer at training time.
|
Description | One-line description of the layer, specified as a character
vector or a string scalar. This description appears when the layer
is displayed in a |
Type | Type of the layer, specified as a character vector or a string
scalar. The value of Type appears when the layer is
displayed in a Layer array. If you do not specify a
layer type, then the software displays the layer class name. |
NumInputs | Number of inputs of the layer specified as a positive integer. If you
do not specify this value, then the software automatically sets
NumInputs to the number of names in
InputNames . The default value is 1. |
InputNames | The input names of the layer specified as a cell array of character
vectors. If you do not specify this value and
NumInputs is greater than 1, then the software
automatically sets InputNames to
{'in1',...,'inN'} , where N is
equal to NumInputs . The default value is
{'in'} . |
NumOutputs | Number of outputs of the layer specified as a positive integer. If
you do not specify this value, then the software automatically sets
NumOutputs to the number of names in
OutputNames . The default value is 1. |
OutputNames | The output names of the layer specified as a cell array of character
vectors. If you do not specify this value and
NumOutputs is greater than 1, then the software
automatically sets OutputNames to
{'out1',...,'outM'} , where M
is equal to NumOutputs . The default value is
{'out'} . |
If the layer has no other properties, then you can omit the properties
section.
Tip
If you are creating a layer with multiple inputs, then you must
set either the NumInputs
or InputNames
properties in the
layer constructor. If you are creating a layer with multiple outputs, then you must set either
the NumOutputs
or OutputNames
properties in the layer
constructor. For an example, see Define Custom Deep Learning Layer with Multiple Inputs.
To support code generation:
Non-scalar properties must have type single, double, or character array.
Scalar properties must be numeric or have type logical or string.
A PReLU layer does not require any additional properties, so you can remove the
properties
section.
A PReLU layer has only one learnable parameter, the scaling coefficient
a. Declare this learnable parameter in the properties
(Learnable)
section and call the parameter
Alpha
.
properties (Learnable)
% Layer learnable parameters
% Scaling coefficient
Alpha
end
Create the function that constructs the layer and initializes the layer properties. Specify any variables required to create the layer as inputs to the constructor function.
The PReLU layer constructor function requires two input arguments: the number of
channels of the expected input data and the layer name. The number of channels specifies
the size of the learnable parameter Alpha
. Specify two input
arguments named numChannels
and name
in the
codegenPreluLayer
function. Add a comment to the top of the
function that explains the syntax of the function.
function layer = codegenPreluLayer(numChannels, name) % layer = codegenPreluLayer(numChannels) creates a PReLU layer with % numChannels channels and specifies the layer name. ... end
Code generation does not support arguments
blocks.
Initialize the layer properties, including learnable parameters in the constructor
function. Replace the comment % Layer constructor function goes
here
with code that initializes the layer properties.
Set the Name
property to the input argument
name
.
% Set layer name.
layer.Name = name;
Give the layer a one-line description by setting the
Description
property of the layer. Set the description to
describe the type of layer and its size.
% Set layer description. layer.Description = "PReLU with " + numChannels + " channels";
For a PReLU layer, when the input values are negative, the layer multiplies each
channel of the input by the corresponding channel of Alpha
.
Initialize the learnable parameter Alpha
to be a random vector of
size 1-by-1-by-numChannels
. With the third dimension specified as
size numChannels
, the layer can use element-wise multiplication
of the input in the forward function. Alpha
is a property of the
layer object, so you must assign the vector to
layer.Alpha
.
% Initialize scaling coefficient.
layer.Alpha = rand([1 1 numChannels]);
View the completed constructor function.
function layer = codegenPreluLayer(numChannels, name)
% layer = codegenPreluLayer(numChannels, name) creates a PReLU
% layer for 2-D image input with numChannels channels and specifies
% the layer name.
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = "PReLU with " + numChannels + " channels";
% Initialize scaling coefficient.
layer.Alpha = rand([1 1 numChannels]);
end
With this constructor function, the command
codegenPreluLayer(3,'prelu')
creates a PReLU layer with three
channels and the name 'prelu'
.
Create the layer forward functions to use at prediction time and training time.
Create a function named predict
that propagates the data forward
through the layer at prediction time and outputs the result.
The syntax for predict
is
[Z1,…,Zm] = predict(layer,X1,…,Xn)
X1,…,Xn
are the n
layer inputs and
Z1,…,Zm
are the m
layer outputs. The values
n
and m
must correspond to the
NumInputs
and NumOutputs
properties of the
layer.Tip
If the number of inputs to predict
can vary, then use
varargin
instead of X1,…,Xn
. In this case,
varargin
is a cell array of the inputs, where
varargin{i}
corresponds to Xi
. If the number
of outputs can vary, then use varargout
instead of
Z1,…,Zm
. In this case, varargout
is a cell
array of the outputs, where varargout{j}
corresponds to
Zj
.
Because a PReLU layer has only one input and one output, the syntax for
predict
for a PReLU layer is Z =
predict(layer,X)
.
Code generation supports custom intermediate layers with 2-D image input only. The inputs are h-by-w-by-c-by-N arrays, where h, w, and c correspond to the height, width, and number of channels of the images respectively, and N is the number of observations. The observation dimension is 4.
For code generation support, all the layer inputs must have the same number of dimensions and batch size.
By default, the layer uses predict
as the forward function at
training time. To use a different forward function at training time, or retain a value
required for a custom backward function, you must also create a function named
forward
. The software does not generate code for the
forward
function but it must be code generation
compatible.
The forward
function propagates the data forward through the layer
at training time and also outputs a memory value.
The syntax for forward
is
[Z1,…,Zm,memory] = forward(layer,X1,…,Xn)
X1,…,Xn
are the n
layer inputs,
Z1,…,Zm
are the m
layer outputs, and
memory
is the memory of the layer.Tip
If the number of inputs to forward
can vary, then use
varargin
instead of X1,…,Xn
. In this case,
varargin
is a cell array of the inputs, where
varargin{i}
corresponds to Xi
. If the number
of outputs can vary, then use varargout
instead of
Z1,…,Zm
. In this case, varargout
is a cell
array of the outputs, where varargout{j}
corresponds to
Zj
for j
=1,…,NumOutputs
and
varargout{NumOutputs+1}
corresponds to
memory
.
The PReLU operation is given by
where is the input of the nonlinear activation f on channel i, and is the coefficient controlling the slope of the negative part. The subscript i in indicates that the nonlinear activation can vary on different channels.
Implement this operation in predict
. In predict
,
the input X
corresponds to x in the equation. The
output Z
corresponds to .
Add a comment to the top of the function that explains the syntaxes of the function.
Tip
If you preallocate arrays using functions like
zeros
, then you must ensure that the data types of these arrays are
consistent with the layer function inputs. To create an array of zeros of the same data type of
another array, use the 'like'
option of zeros
. For
example, to initialize an array of zeros of size sz
with the same data type
as the array X
, use Z = zeros(sz,'like',X)
.
Implementing the backward
function is optional when the forward
functions fully support dlarray
input. For code generation support, the
predict
function must also support numeric input.
One way to calculate the output of the PReLU operation is to use the code:
Z = max(X,0) + layer.Alpha .* min(0,X);
.*
operation, you can use the bsxfun
function
instead:Z = max(X,0) + bsxfun(@times, layer.Alpha, min(0,X));
bsxfun
does not support dlarray
input. To
implement the predict
function that supports both code generation and
dlarray
input use an if
statement with the
isdlarray
function to use the appropriate code for the type of
input. function Z = predict(layer, X)
% Z = predict(layer, X) forwards the input data X through the
% layer and outputs the result Z.
if isdlarray(X)
Z = max(X,0) + layer.Alpha .* min(0,X);
else
Z = max(X,0) + bsxfun(@times, layer.Alpha, min(0,X));
end
end
Because the predict
function fully supports
dlarray
objects, defining the backward
function
is optional. For a list of functions that support dlarray
objects, see
List of Functions with dlarray Support.
View the completed layer class file.
classdef codegenPreluLayer < nnet.layer.Layer % Example custom PReLU layer with codegen support. %#codegen properties (Learnable) % Layer learnable parameters % Scaling coefficient Alpha end methods function layer = codegenPreluLayer(numChannels, name) % layer = codegenPreluLayer(numChannels, name) creates a PReLU % layer for 2-D image input with numChannels channels and specifies % the layer name. % Set layer name. layer.Name = name; % Set layer description. layer.Description = "PReLU with " + numChannels + " channels"; % Initialize scaling coefficient. layer.Alpha = rand([1 1 numChannels]); end function Z = predict(layer, X) % Z = predict(layer, X) forwards the input data X through the % layer and outputs the result Z. if isdlarray(X) Z = max(X,0) + layer.Alpha .* min(0,X); else Z = max(X,0) + bsxfun(@times, layer.Alpha, min(0,X)); end end end end
Check code generation compatibility of the custom layer codegenPreluLayer
.
Define a custom PReLU layer with code generation support. To create this layer, save the file codegenPreluLayer.m
in the current folder.
Create an instance of the layer and check its validity using checkLayer
. Specify the valid input size to be the size of a single observation of typical input to the layer. The layer expects 4-D array inputs, where the first three dimensions correspond to the height, width, and number of channels of the previous layer output, and the fourth dimension corresponds to the observations.
Specify the typical size of the input of an observation and set the 'ObservationDimension'
option to 4. To check for code generation compatibility set the 'CheckCodegenCompatibility'
option to true
.
layer = codegenPreluLayer(20,'prelu'); validInputSize = [24 24 20]; checkLayer(layer,validInputSize,'ObservationDimension',4,'CheckCodegenCompatibility',true)
Skipping GPU tests. No compatible GPU device found. Running nnet.checklayer.TestLayerWithoutBackward .......... ....... Done nnet.checklayer.TestLayerWithoutBackward __________ Test Summary: 17 Passed, 0 Failed, 0 Incomplete, 4 Skipped. Time elapsed: 0.56219 seconds.
Here, the function does not detect any issues with the layer.
[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification." In Proceedings of the IEEE international conference on computer vision, pp. 1026-1034. 2015.