Import results of SQL statement in MySQL database into MATLAB
returns all rows of data after executing the SQL statement results
= fetch(conn
,sqlquery
)sqlquery
for
the connection
object. fetch
imports data in batches.
customizes options for importing data from an executed SQL query by using the results
= fetch(conn
,sqlquery
,opts
)SQLImportOptions
object.
specifies additional options using one or more name-value pair arguments and any of the
previous input argument combinations. For example, results
= fetch(___,Name,Value
)'MaxRows',5
imports
five rows of data.
Import all product data from a MySQL® database table into MATLAB® using the MySQL native interface and the fetch
function. Then, determine the highest unit cost among products in the table.
Create a MySQL native interface database connection to a MySQL database using a data source, user name, and password. The database contains the table productTable
.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Import all the data from productTable
by using the connection object and SQL query. Then, display the first three rows of the imported data.
sqlquery = "SELECT * FROM productTable";
data = fetch(conn,sqlquery);
head(data,3)
ans=3×5 table
productNumber stockNumber supplierNumber unitCost productDescription
_____________ ___________ ______________ ________ __________________
9 1.2597e+05 1003 13 "Victorian Doll"
8 2.1257e+05 1001 5 "Train Set"
7 3.8912e+05 1007 16 "Engine Kit"
Determine the highest unit cost for all products in the table.
max(data.unitCost)
ans = 24
Close the database connection.
close(conn)
Customize import options when importing data from the results of an SQL query on a MySQL® database using the MySQL native interface. Control the import options by creating an SQLImportOptions
object. Then, customize import options for different columns in the SQL query. Import data using the fetch
function.
This example uses the employees_database.mat
file, which contains the columns first_name
, hire_date
, and DEPARTMENT_NAME
. The example assumes that you are connecting to a MySQL database version 5.7.22 using the MySQL Connector/C++ driver version 8.0.15.
Create a MySQL native interface database connection to a MySQL database with a data source name, user name, and password.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Load employee information into the MATLAB® workspace.
employeedata = load("employees_database.mat");
Create the employees
and departments
database tables using the employee information.
emps = employeedata.employees; depts = employeedata.departments; sqlwrite(conn,"employees",emps) sqlwrite(conn,"departments",depts)
Create an SQLImportOptions
object using an SQL query and the databaseImportOptions
function. This query retrieves all information for employees who are sales managers or programmers.
sqlquery = strcat("SELECT * from employees e join departments d ", ... "on (e.department_id = d.department_id) WHERE ", ... "(job_id = 'IT_PROG' or job_id = 'SA_MAN')"); opts = databaseImportOptions(conn,sqlquery)
opts = SQLImportOptions with properties: ExcludeDuplicates: false VariableNamingRule: 'preserve' VariableNames: {'employee_id', 'first_name', 'last_name' ... and 13 more} VariableTypes: {'double', 'string', 'string' ... and 13 more} SelectedVariableNames: {'employee_id', 'first_name', 'last_name' ... and 13 more} FillValues: { NaN, <missing>, <missing> ... and 13 more } VariableOptions: Show all 16 VariableOptions
Display the current import options for the variables selected in the SelectedVariableNames
property of the SQLImportOptions
object.
vars = opts.SelectedVariableNames; varOpts = getoptions(opts,vars)
varOpts = 1x16 SQLVariableImportOptions array with properties: Variable Options: (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) Name: 'employee_id' | 'first_name' | 'last_name' | 'email' | 'phone_number' | 'hire_date' | 'job_id' | 'salary' | 'commission_pct' | 'manager_id' | 'department_id' | 'temporary' | 'DEPARTMENT_ID' | 'DEPARTMENT_NAME' | 'MANAGER_ID' | 'LOCATION_ID' Type: 'double' | 'string' | 'string' | 'string' | 'string' | 'datetime' | 'string' | 'double' | 'double' | 'double' | 'double' | 'logical' | 'double' | 'string' | 'double' | 'double' MissingRule: 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' FillValue: NaN | <missing> | <missing> | <missing> | <missing> | NaT | <missing> | NaN | NaN | NaN | NaN | 0 | NaN | <missing> | NaN | NaN To access sub-properties of each variable, use getoptions
Change the data types for the hire_date
, DEPARTMENT_NAME
, and first_name
variables using the setoptions
function. Then, display the updated import options. For efficiency, change the data type of the hire_date
variable to string
. Because DEPARTMENT_NAME
designates a finite set of repeating values, change the data type of this variable to categorical
. Also, change the name of this variable to lowercase. Because first_name
stores text data, change the data type of this variable to char
.
opts = setoptions(opts,"hire_date","Type","string"); opts = setoptions(opts,"DEPARTMENT_NAME","Name","department_name", ... "Type","categorical"); opts = setoptions(opts,"first_name","Type","char"); vars = opts.SelectedVariableNames; varOpts = getoptions(opts,vars)
varOpts = 1x16 SQLVariableImportOptions array with properties: Variable Options: (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) Name: 'employee_id' | 'first_name' | 'last_name' | 'email' | 'phone_number' | 'hire_date' | 'job_id' | 'salary' | 'commission_pct' | 'manager_id' | 'department_id' | 'temporary' | 'DEPARTMENT_ID' | 'department_name' | 'MANAGER_ID' | 'LOCATION_ID' Type: 'double' | 'char' | 'string' | 'string' | 'string' | 'string' | 'string' | 'double' | 'double' | 'double' | 'double' | 'logical' | 'double' | 'categorical' | 'double' | 'double' MissingRule: 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' FillValue: NaN | '' | <missing> | <missing> | <missing> | <missing> | <missing> | NaN | NaN | NaN | NaN | 0 | NaN | <undefined> | NaN | NaN To access sub-properties of each variable, use getoptions
Select the three modified variables using the SelectVariableNames
property.
opts.SelectedVariableNames = ["first_name","hire_date","department_name"];
Import and display the results of the SQL query using the fetch
function.
employees_data = fetch(conn,sqlquery,opts)
employees_data=10×3 table
first_name hire_date department_name
_____________ ____________________________ _______________
{'Alexander'} "2006-01-03 00:00:00.000000" IT
{'Bruce' } "2007-05-21 00:00:00.000000" IT
{'David' } "2005-06-25 00:00:00.000000" IT
{'Valli' } "2006-02-05 00:00:00.000000" IT
{'Diana' } "2007-02-07 00:00:00.000000" IT
{'John' } "2004-10-01 00:00:00.000000" Sales
{'Karen' } "2005-01-05 00:00:00.000000" Sales
{'Alberto' } "2005-03-10 00:00:00.000000" Sales
{'Gerald' } "2007-10-15 00:00:00.000000" Sales
{'Eleni' } "2008-01-29 00:00:00.000000" Sales
Delete the employees
and departments
database tables using the execute
function.
execute(conn,"DROP TABLE employees") execute(conn,"DROP TABLE departments")
Close the database connection.
close(conn)
Specify the data return format and the number of imported rows for the results of an SQL query. Import data using the SQL query and the fetch
function.
This example assumes that you are connecting to a MySQL® database version 5.7.22 using the MySQL Connector/C++ driver version 8.0.15.
Create a MySQL native interface database connection to a MySQL database with a data source name, user name, and password.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Load patient information into the MATLAB® workspace.
patients = readtable('patients.xls');
Create the patients
database table using the patient information.
tablename = 'patients';
sqlwrite(conn,tablename,patients)
Select all data from the patients
database table and import five rows from the table as a structure. Use the 'DataReturnFormat'
name-value pair argument to specify returning the data as a structure. Also, use the 'MaxRows'
name-value pair argument to specify five rows. Display the imported data.
sqlquery = strcat("SELECT * FROM ",tablename); results = fetch(conn,sqlquery,'DataReturnFormat',"structure", ... 'MaxRows',5)
results = struct with fields:
LastName: [5×1 string]
Gender: [5×1 string]
Age: [5×1 double]
Location: [5×1 string]
Height: [5×1 double]
Weight: [5×1 double]
Smoker: [5×1 logical]
Systolic: [5×1 double]
Diastolic: [5×1 double]
SelfAssessedHealthStatus: [5×1 string]
Delete the patients
database table using the execute
function.
sqlquery = strcat("DROP TABLE ",tablename);
execute(conn,sqlquery)
Close the database connection.
close(conn)
Retrieve metadata information when importing data from an SQL query. Import data using the fetch
function and explore the metadata information by using dot notation.
This example uses the outages.csv
file, which contains outage data. Also, the example assumes that you are connecting to a MySQL® database version 5.7.22 using the MySQL Connector/C++ driver version 8.0.15.
Create a MySQL native interface database connection to a MySQL database with a data source name, user name, and password.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Load outage information into the MATLAB® workspace.
outages = readtable("outages.csv");
Create the outages
database table using the outage information. Use the 'ColumnType'
name-value pair argument to customize the data types of the variables in the outages
table.
tablename = "outages"; sqlwrite(conn,tablename,outages, ... 'ColumnType',["varchar(120)","datetime","numeric(38,16)", ... "numeric(38,16)","datetime","varchar(150)"])
Import the data into the MATLAB workspace and return metadata information about the imported data.
sqlquery = "SELECT * FROM outages";
[results,metadata] = fetch(conn,sqlquery);
View the names of the variables in the imported data.
metadata.Properties.RowNames
ans = 6×1 cell
{'Region' }
{'OutageTime' }
{'Loss' }
{'Customers' }
{'RestorationTime'}
{'Cause' }
View the data type of each variable in the imported data.
metadata.VariableType
ans = 6×1 cell
{'string' }
{'datetime'}
{'double' }
{'double' }
{'datetime'}
{'string' }
View the missing data value for each variable in the imported data.
metadata.FillValue
ans=6×1 cell array
{1×1 missing}
{[NaT ]}
{[ NaN]}
{[ NaN]}
{[NaT ]}
{1×1 missing}
View the indices of the missing data for each variable in the imported data.
metadata.MissingRows
ans=6×1 cell array
{ 0×1 double}
{ 0×1 double}
{1208×1 double}
{ 656×1 double}
{ 58×1 double}
{ 0×1 double}
Display the first eight rows of the imported data that contain missing restoration time values. data
contains restoration time values in the fifth variable. Use the numeric indices to find the rows with missing data.
index = metadata.MissingRows{5,1}; nullrestoration = results(index,:); head(nullrestoration)
ans=8×6 table
Region OutageTime Loss Customers RestorationTime Cause
___________ ____________________ ______ __________ _______________ __________________
"SouthEast" 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT "winter storm"
"NorthEast" 18-Sep-2004 05:54:00 0 0 NaT "equipment fault"
"MidWest" 20-Apr-2002 16:46:00 23141 NaN NaT "unknown"
"NorthEast" 16-Sep-2004 19:42:00 4718 NaN NaT "unknown"
"SouthEast" 14-Sep-2005 15:45:00 1839.2 3.4144e+05 NaT "severe storm"
"SouthEast" 17-Aug-2004 17:34:00 624.1 1.7879e+05 NaT "severe storm"
"SouthEast" 28-Jan-2006 23:13:00 498.78 NaN NaT "energy emergency"
"West" 20-Jun-2003 18:22:00 0 0 NaT "energy emergency"
Delete the outages
database table using the execute
function.
sqlstr = "DROP TABLE ";
sqlquery = strcat(sqlstr,tablename);
execute(conn,sqlquery)
Close the database connection.
close(conn)
conn
— MySQL® native interface database connectionconnection
object
MySQL native interface database connection, specified as a connection
object.
sqlquery
— SQL statementSQL statement, specified as a character vector or string scalar. The SQL statement can be any
valid SQL statement, including nested queries. The SQL statement can be a stored
procedure, such as {call sp_name (parm1,parm2,...)}
. For stored
procedures that return one or more result sets, use the fetch
function.
Data Types: char
| string
opts
— Database import optionsSQLImportOptions
objectDatabase import options, specified as an SQLImportOptions
object.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
results =
fetch(conn,sqlquery,'MaxRows',50,'DataReturnFormat','structure')
imports 50 rows
of data as a structure.'MaxRows'
— Maximum number of rows to returnMaximum number of rows to return, specified as the comma-separated pair consisting of
'MaxRows'
and a positive numeric scalar. By default, the
fetch
function returns all rows from the executed SQL
query. Use this name-value pair argument to limit the number of rows imported into
MATLAB®.
Example: 'MaxRows',10
Data Types: double
'DataReturnFormat'
— Data return format'table'
(default) | 'cellarray'
| 'numeric'
| 'structure'
Data return format, specified as the comma-separated pair consisting of
'DataReturnFormat'
and one of these values:
'table'
'cellarray'
'numeric'
'structure'
Use the 'DataReturnFormat'
name-value pair argument to
specify the data type of the results
data. To specify integer
classes for numeric data, use the opts
input argument.
You can specify the value using a character vector or string scalar.
Example: 'DataReturnFormat','cellarray'
imports data as a cell array.
'VariableNamingRule'
— Variable naming rule"preserve"
(default) | "modify"
Variable naming rule, specified as the comma-separated pair consisting of 'VariableNamingRule'
and one of these values:
"preserve"
— Preserve most variable names when the
fetch
function imports data. For details, see
the Limitations section.
"modify"
— Remove non-ASCII characters from variable names when the fetch
function imports data.
Example: 'VariableNamingRule',"modify"
Data Types: string
results
— Result dataResult data, returned as a table, cell array, structure, or numeric matrix. The result data contains all rows of data from the executed SQL statement by default.
Use the 'MaxRows'
name-value pair argument to specify the
number of rows of data to import. Use the 'DataReturnFormat'
name-value pair argument to specify the data type of the result data.
When the executed SQL statement does not return any rows, the result data is an empty table.
When you import data, the fetch
function converts the data type
of each column from the MySQL database to the MATLAB data type. This table maps the data type of a database column to the
converted MATLAB data type.
MySQL Data Type | MATLAB Data Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
metadata
— Metadata informationMetadata information, returned as a table with these variables.
Variable Name | Variable Description | Variable Data Type |
---|---|---|
| Data type of each variable in the imported data | Cell array of character vectors |
| Value of missing data for each variable in the imported data | Cell array of missing data values |
| Indices for each occurrence of missing data in each variable of the imported data | Cell array of numeric indices |
By default, the fetch
function imports text
data as a character vector and numeric data as a double.
FillValue
is an empty character
array (for text data) or NaN
(for numeric
data) by default. To change the missing data value to another
value, use the SQLImportOptions
object.
The RowNames
property of the metadata
table contains
the names of the variables in the imported data.
The name-value pair argument 'VariableNamingRule'
has these
limitations:
The fetch
function returns an error when you specify the
'VariableNamingRule'
name-value pair argument and set the
'DataReturnFormat'
name-value pair argument to
cellarray
, structure
, or
numeric
.
The fetch
function returns a warning when you set the
VariableNamingRule
property of the SQLImportOptions
object to "preserve"
and set the
'DataReturnFormat'
name-value pair argument to
structure
.
The fetch
function returns an error when you use the
'VariableNamingRule'
name-value pair argument with the
SQLImportOptions
object opts
.
When the 'VariableNamingRule'
name-value pair argument is set to
the value 'modify'
:
The variable names Properties
, RowNames
, and
VariableNames
are reserved identifiers for the
table
data type.
The length of each variable name must be less than the number returned by
namelengthmax
.
The fetch
function imports data using the command line. To import
data interactively, use the Database Explorer app.
close
| databaseImportOptions
| execute
| getoptions
| mysql
| reset
| setoptions
You have a modified version of this example. Do you want to open this example with your edits?