Jacobi ND elliptic function
jacobiND(
returns the Jacobi ND Elliptic Function of
u
,m
)u
and m
. If u
or
m
is an array, then jacobiND
acts
element-wise.
jacobiND(2,1)
ans = 3.7622
Call jacobiND
on array inputs.
jacobiND
acts element-wise when
u
or m
is an array.
jacobiND([2 1 -3],[1 2 3])
ans = 3.7622 3.2181 -218.7739
Convert numeric input to symbolic form using
sym
, and find the Jacobi ND elliptic function. For
symbolic input where u = 0
or m = 0
or
1
, jacobiND
returns exact symbolic
output.
jacobiND(sym(2),sym(1))
ans = cosh(2)
Show that for other values of u
or
m
, jacobiND
returns an
unevaluated function call.
jacobiND(sym(2),sym(3))
ans = jacobiND(2, 3)
For symbolic variables or expressions,
jacobiND
returns the unevaluated function call.
syms x y f = jacobiND(x,y)
f = jacobiND(x, y)
Substitute values for the variables by using subs
, and
convert values to double by using double
.
f = subs(f, [x y], [3 5])
f = jacobiND(3, 5)
fVal = double(f)
fVal = 1.0024
Calculate f
to higher precision using
vpa
.
fVal = vpa(f)
fVal = 1.0024338497055006289470589737758
Plot the Jacobi ND elliptic function using
fcontour
. Set u
on the x-axis and
m
on the y-axis by using the symbolic function
f
with the variable order (u,m)
. Fill
plot contours by setting Fill
to
on
.
syms f(u,m) f(u,m) = jacobiND(u,m); fcontour(f,'Fill','on') title('Jacobi ND Elliptic Function') xlabel('u') ylabel('m')
ellipticK
| jacobiAM
| jacobiCD
| jacobiCN
| jacobiCS
| jacobiDC
| jacobiDN
| jacobiDS
| jacobiNC
| jacobiNS
| jacobiSC
| jacobiSD
| jacobiSN
| jacobiZeta