Class: ClassificationLinear
Classification edge for linear classification models
uses
any of the previous syntaxes and additional options specified by one
or more e
= edge(___,Name,Value
)Name,Value
pair arguments. For example,
you can specify that columns in the predictor data correspond to observations
or supply observation weights.
Mdl
— Binary, linear classification modelClassificationLinear
model objectBinary, linear classification model, specified as a ClassificationLinear
model object.
You can create a ClassificationLinear
model object
using fitclinear
.
X
— Predictor dataPredictor data, specified as an n-by-p full or sparse matrix. This orientation of X
indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.
If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns'
, then you might experience a significant reduction in computation time.
The length of Y
and the number of observations
in X
must be equal.
Data Types: single
| double
Y
— Class labelsClass labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.
The data type of Y
must be the same as the
data type of Mdl.ClassNames
. (The software treats string arrays as cell arrays of character
vectors.)
The distinct classes in Y
must
be a subset of Mdl.ClassNames
.
If Y
is a character array, then
each element must correspond to one row of the array.
The length of Y
and the number
of observations in X
must be equal.
Data Types: categorical
| char
| string
| logical
| single
| double
| cell
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
'ObservationsIn'
— Predictor data observation dimension'rows'
(default) | 'columns'
Predictor data observation dimension, specified as the comma-separated
pair consisting of 'ObservationsIn'
and 'columns'
or 'rows'
.
If you orient your predictor matrix so that observations correspond
to columns and specify 'ObservationsIn','columns'
,
then you might experience a significant reduction in optimization-execution
time.
'Weights'
— Observation weightsObservation weights, specified as the comma-separated pair consisting
of 'Weights'
and a numeric vector of positive values.
If you supply weights, edge
computes the weighted classification edge.
Let n
be the number of observations
in X
.
numel(Weights)
must be n
.
By default, Weights
is ones(
.n
,1)
edge
normalizes Weights
to
sum up to the value of the prior probability in the respective class.
Data Types: double
| single
e
— Classification edgesClassification edges, returned as a numeric scalar or row vector.
e
is the same size as Mdl.Lambda
. e(
is
the classification edge of the linear classification model trained
using the regularization strength j
)Mdl.Lambda(
.j
)
Load the NLP data set.
load nlpdata
X
is a sparse matrix of predictor data, and Y
is a categorical vector of class labels. There are more than two classes in the data.
The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.
Ystats = Y == 'stats';
Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Specify to holdout 30% of the observations. Optimize the objective function using SpaRSA.
rng(1); % For reproducibility CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30); CMdl = CVMdl.Trained{1};
CVMdl
is a ClassificationPartitionedLinear
model. It contains the property Trained
, which is a 1-by-1 cell array holding a ClassificationLinear
model that the software trained using the training set.
Extract the training and test data from the partition definition.
trainIdx = training(CVMdl.Partition); testIdx = test(CVMdl.Partition);
Estimate the training- and test-sample edges.
eTrain = edge(CMdl,X(trainIdx,:),Ystats(trainIdx))
eTrain = 15.6660
eTest = edge(CMdl,X(testIdx,:),Ystats(testIdx))
eTest = 15.4767
One way to perform feature selection is to compare test-sample edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.
Load the NLP data set.
load nlpdata
X
is a sparse matrix of predictor data, and Y
is a categorical vector of class labels. There are more than two classes in the data.
The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages. For quicker execution time, orient the predictor data so that individual observations correspond to columns.
Ystats = Y == 'stats'; X = X'; rng(1); % For reproducibility
Create a data partition which holds out 30% of the observations for testing.
Partition = cvpartition(Ystats,'Holdout',0.30); testIdx = test(Partition); % Test-set indices XTest = X(:,testIdx); YTest = Ystats(testIdx);
Partition
is a cvpartition
object that defines the data set partition.
Randomly choose half of the predictor variables.
p = size(X,1); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));
Train two binary, linear classification models: one that uses the all of the predictors and one that uses half of the predictors. Optimize the objective function using SpaRSA, and indicate that observations correspond to columns.
CVMdl = fitclinear(X,Ystats,'CVPartition',Partition,'Solver','sparsa',... 'ObservationsIn','columns'); PCVMdl = fitclinear(X(idxPart,:),Ystats,'CVPartition',Partition,'Solver','sparsa',... 'ObservationsIn','columns');
CVMdl
and PCVMdl
are ClassificationPartitionedLinear
models.
Extract the trained ClassificationLinear
models from the cross-validated models.
CMdl = CVMdl.Trained{1}; PCMdl = PCVMdl.Trained{1};
Estimate the test sample edge for each classifier.
fullEdge = edge(CMdl,XTest,YTest,'ObservationsIn','columns')
fullEdge = 15.4767
partEdge = edge(PCMdl,XTest(idxPart,:),YTest,'ObservationsIn','columns')
partEdge = 13.4458
Based on the test-sample edges, the classifier that uses all of the predictors is the better model.
To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare test-sample edges.
Load the NLP data set. Preprocess the data as in Feature Selection Using Test-Sample Edges.
load nlpdata Ystats = Y == 'stats'; X = X'; Partition = cvpartition(Ystats,'Holdout',0.30); testIdx = test(Partition); XTest = X(:,testIdx); YTest = Ystats(testIdx);
Create a set of 11 logarithmically-spaced regularization strengths from through .
Lambda = logspace(-8,1,11);
Train binary, linear classification models that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to 1e-8
.
rng(10); % For reproducibility CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',... 'CVPartition',Partition,'Learner','logistic','Solver','sparsa',... 'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
CVMdl = classreg.learning.partition.ClassificationPartitionedLinear CrossValidatedModel: 'Linear' ResponseName: 'Y' NumObservations: 31572 KFold: 1 Partition: [1x1 cvpartition] ClassNames: [0 1] ScoreTransform: 'none' Properties, Methods
Extract the trained linear classification model.
Mdl = CVMdl.Trained{1}
Mdl = ClassificationLinear ResponseName: 'Y' ClassNames: [0 1] ScoreTransform: 'logit' Beta: [34023x11 double] Bias: [1x11 double] Lambda: [1x11 double] Learner: 'logistic' Properties, Methods
Mdl
is a ClassificationLinear
model object. Because Lambda
is a sequence of regularization strengths, you can think of Mdl
as 11 models, one for each regularization strength in Lambda
.
Estimate the test-sample edges.
e = edge(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns')
e = 1×11
0.9986 0.9986 0.9986 0.9986 0.9986 0.9932 0.9767 0.9182 0.8333 0.8128 0.8128
Because there are 11 regularization strengths, e
is a 1-by-11 vector of edges.
Plot the test-sample edges for each regularization strength. Identify the regularization strength that maximizes the edges over the grid.
figure; plot(log10(Lambda),log10(e),'-o') [~, maxEIdx] = max(e); maxLambda = Lambda(maxEIdx); hold on plot(log10(maxLambda),log10(e(maxEIdx)),'ro'); ylabel('log_{10} test-sample edge') xlabel('log_{10} Lambda') legend('Edge','Max edge') hold off
Several values of Lambda
yield similarly high edges. Higher values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.
Choose the regularization strength that occurs just before the edge starts decreasing.
LambdaFinal = Lambda(5);
Train a linear classification model using the entire data set and specify the regularization strength yielding the maximal edge.
MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns',... 'Learner','logistic','Solver','sparsa','Regularization','lasso',... 'Lambda',LambdaFinal);
To estimate labels for new observations, pass MdlFinal
and the new data to predict
.
The classification edge is the weighted mean of the classification margins.
One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.
The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.
The software defines the classification margin for binary classification as
x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the positive-class classification score for the observation x. The classification margin is commonly defined as m = yf(x).
If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
For linear classification models, the raw classification score for classifying the observation x, a row vector, into the positive class is defined by
For the model with regularization strength j, is the estimated column vector of coefficients (the model property
Beta(:,j)
) and is the estimated, scalar bias (the model property
Bias(j)
).
The raw classification score for classifying x into the negative class is –f(x). The software classifies observations into the class that yields the positive score.
If the linear classification model consists of logistic regression learners, then the
software applies the 'logit'
score transformation to the raw
classification scores (see ScoreTransform
).
By default, observation weights are prior class probabilities. If you supply weights using
Weights
, then the software normalizes them to sum to the prior
probabilities in the respective classes. The software uses the normalized weights to
estimate the weighted edge.
This function fully supports tall arrays. For more information, see Tall Arrays (MATLAB).
You have a modified version of this example. Do you want to open this example with your edits?