comm.OFDMModulator

Modulate signal using OFDM method

Description

The OFDMModulator object modulates a signal using the orthogonal frequency division modulation method. The output is a baseband representation of the modulated signal.

To modulate a signal using OFDM:

  1. Create the comm.OFDMModulator object and set its properties.

  2. Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Description

example

ofdmmod = comm.OFDMModulator creates an OFDM modulator System object™.

example

ofdmmod = comm.OFDMModulator(Name,Value) specifies Properties using one of more name-value pair arguments. Enclose each property name in quotes. For example, comm.OFDMModulator('NumSymbols',8) specifies eight OFDM symbols in the time-frequency grid.

.

example

ofdmmod = comm.OFDMModulator(ofdmdemod) sets the OFDM modulator system object properties based on the specified OFDM demodulator system object comm.OFDMDemodulator.

Properties

expand all

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

Number of Fast Fourier Transform (FFT) points, specified as a positive integer. The length of the FFT, NFFT, must be greater than or equal to 8 and is equivalent to the number of subcarriers.

Data Types: double

Number of subcarriers allocated to the left and right guard bands, specified as a two-element column vector of integers. The number of subcarriers must fall within [0, NFFT/2⌋ − 1]. This vector has the form [NleftG, NrightG], where NleftG and NrightG specify the left and right guard bands, respectively.

Data Types: double

Option to insert DC null, specified as a numeric or logical 0 (false) or 1 (true). The DC subcarrier is the center of the frequency band and has the index value:

  • (FFTLength / 2) + 1 when FFTLength is even

  • (FFTLength + 1) / 2 when FFTLength is odd

Option to specify pilot input, specified as a numeric or logical 0 (false) or 1 (true). If this property is 1 (true), you can assign individual subcarriers for pilot transmission. If this property is 0 (false), pilot information is assumed to be embedded in the input data.

Pilot subcarrier indices, specified as a column vector. If the PilotCarrierIndices property is set to 1 (true), you can specify the indices of the pilot subcarriers. You can assign the indices to the same or different subcarriers for each symbol. Similarly, the pilot carrier indices can differ across multiple transmit antennas. Depending on the desired level of control for index assignments, the dimensions of the property vary. Valid pilot indices fall in the range

[NleftG+1,NFFT/2][NFFT/2+2,NFFTNrightG],

where the index value cannot exceed the number of subcarriers. When the pilot indices are the same for every symbol and transmit antenna, the property has dimensions Npilot-by-1. When the pilot indices vary across symbols, the property has dimensions Npilot-by-Nsym. If you transmit only one symbol but multiple transmit antennas, the property has dimensions Npilot-by-1-by-Nt., where Nt. is the number of transmit antennas. If the indices vary across the number of symbols and transmit antennas, the property has dimensions Npilot-by-Nsym-by-Nt. If the number of transmit antennas is greater than one, ensure that the indices per symbol must be mutually distinct across antennas to minimize interference.

To enable this property, set the PilotInputPort property to 1 (true).

Length of cyclic prefix, specified as a positive integer. If you specify a scalar, the prefix length is the same for all symbols through all antennas. If you specify a row vector of length Nsym, the prefix length can vary across symbols but remains the same through all antennas.

Data Types: double

Option to apply raised cosine window between OFDM symbols, specified as true or false. Windowing is the process in which the OFDM symbol is multiplied by a raised cosine window before transmission to more quickly reduce the power of out-of-band subcarriers. Windowing reduces spectral regrowth.

Length of raised cosine window, specified as a positive scalar. This value must be less than or equal to the minimum cyclic prefix length. For example, in a configuration of four symbols with cyclic prefix lengths 12, 14, 16, and 18, the window length must be less than or equal to 12.

To enable this property, set the Windowing property to 1 (true).

Number of OFDM symbols in the time-frequency grid, specified as a positive integer.

Number of transmit antennas, used to transmit the OFDM modulated signal, specified positive integer.

Usage

Description

waveform = ofdmmod(insignal) applies OFDM modulation the specified baseband signal and returns the modulated OFDM baseband signal.

waveform = ofdmmod(data,pilot) assigns the pilot signal, pilot, into the frequency subcarriers specified by the PilotCarrierIndices property value of the ofdmmod system object. To enable this syntax set the PilotCarrierIndices property to true.

Input Arguments

expand all

Input baseband signal, specified as a matrix or 3-D array of numeric values. The input baseband signal must be of size Nf-by-Nsym-by-Nt. where Nf is the number of frequency subcarriers excluding guard bands and DC null.

Data Types: double
Complex Number Support: Yes

Input data, specified as a matrix or 3-D array. The input must be a numeric of size Nd-by-Nsym-by-Nt. where Nd is the number of data subcarriers in each symbol. For more information on how Nd is calculated, see the to PilotCarrierIndices property.

Data Types: double
Complex Number Support: Yes

Pilot signal, specified as a 3-D array of numeric values. The pilot signal must be of size Npilot-by-1-by-Nt.

Data Types: double
Complex Number Support: Yes

Output Arguments

expand all

OFDM Modulated baseband signal, returned as a 3-D array of the same size as the input signal. If the CyclicPrefixLength property is a scalar, the output waveform is of size ((NFFT+CPlen)⁎Nsym)-by-Nt. Otherwise, the size is (NFFT⁎Nsym+∑(CPlen))-by-Nt.

Data Types: double
Complex Number Support: Yes

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

release(obj)

expand all

infoProvide dimensioning information for OFDM modulator
showResourceMappingShow the subcarrier mapping of the OFDM symbols created by the OFDM modulator System object
stepRun System object algorithm
releaseRelease resources and allow changes to System object property values and input characteristics
resetReset internal states of System object

Examples

collapse all

An OFDM modulator System object™ can be constructed using default properties. Once constructed, these properties can be modified.

Construct an OFDM modulator.

ofdmMod = comm.OFDMModulator;

Display the properties of the modulator.

disp(ofdmMod)
  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 1
     NumTransmitAntennas: 1

Modify the number of subcarriers and symbols.

ofdmMod.FFTLength = 128;
ofdmMod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

disp(ofdmMod)
  comm.OFDMModulator with properties:

               FFTLength: 128
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 2
     NumTransmitAntennas: 1

The showResourceMapping method shows the mapping of data, pilot, and null subcarriers in the time-frequency space. Apply the showResourceMapping method.

showResourceMapping(ofdmMod)

An OFDM modulator System object™ can be constructed from an existing OFDM demodulator System object.

Construct an OFDM demodulator, ofdmDemod and specify pilot indices for a single symbol and two transmit antennas.

Note: You can set the PilotCarrierIndices property in the demodulator object, which then changes the number of transmit antennas in the modulator object. The number of receive antennas in the demodulator is uncorrelated with the number of transmit antennas.

ofdmDemod = comm.OFDMDemodulator;
ofdmDemod.PilotOutputPort = true;
ofdmDemod.PilotCarrierIndices = cat(3,[12; 26; 40; 54],...
    [13; 27; 41; 55]);

Use the demodulator, ofdmDemod, to construct the OFDM modulator.

ofdmMod = comm.OFDMModulator(ofdmDemod);

Display the properties of the modulator and verify that they match those of the demodulator.

disp(ofdmMod)
  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: true
     PilotCarrierIndices: [4x1x2 double]
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 1
     NumTransmitAntennas: 2
disp(ofdmDemod)
  comm.OFDMDemodulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
         RemoveDCCarrier: false
         PilotOutputPort: true
     PilotCarrierIndices: [4x1x2 double]
      CyclicPrefixLength: 16
              NumSymbols: 1
      NumReceiveAntennas: 1

The showResourceMapping method displays the time-frequency resource mapping for each transmit antenna.

Construct an OFDM modulator.

mod = comm.OFDMModulator;

Apply the showResourceMapping method.

showResourceMapping(mod)

Insert a DC null.

mod.InsertDCNull = true;

Show the resource mapping after adding the DC null.

showResourceMapping(mod)

The OFDM modulator enables you to specify the subcarrier indices for the pilot signals. The indices can be specified for each symbol and transmit antenna. When there is more than one transmit antenna, ensure that the pilot indices for each symbol differ between antennas.

Construct an OFDM modulator that has two symbols and insert a DC null.

mod = comm.OFDMModulator('FFTLength',128,'NumSymbols',2,...
    'InsertDCNull',true);

Turn on the pilot input port so you can specify the pilot indices.

mod.PilotInputPort = true;

Specify the same pilot indices for both symbols.

mod.PilotCarrierIndices = [12; 56; 89; 100];

Visualize the placement of the pilot signals and nulls in the OFDM time-frequency grid using the showResourceMapping method.

showResourceMapping(mod)

Concatenate a second column of pilot indices to the PilotCarrierIndices property to specify different indices for the second symbol.

mod.PilotCarrierIndices = cat(2, mod.PilotCarrierIndices, ...
    [17; 61; 94; 105]);

Verify that the pilot subcarrier indices differ between symbols.

showResourceMapping(mod)

Increase the number of transmit antennas to two.

mod.NumTransmitAntennas = 2;

Specify the pilot indices for each of the two transmit antennas. To provide indices for multiple antennas while minimizing interference among the antennas, populate the PilotCarrierIndices property as a 3-D array such that the indices for each symbol differ among antennas.

mod.PilotCarrierIndices = cat(3,[20; 50; 70; 110], ...
    [15; 60; 75; 105]);

Display the resource mapping for the two transmit antennas. The gray lines denote the insertion of custom nulls. The nulls are created by the object to minimize interference among the pilot symbols from different antennas.

showResourceMapping(mod)

Specify the length of the cyclic prefix for each OFDM symbol.

Construct an OFDM modulator having five symbols, four left guard-band subcarriers, and three right guard-band subcarriers. Specify the cyclic prefix length for each OFDM symbol.

mod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...
    'NumSymbols',5,...
    'CyclicPrefixLength',[12 10 14 11 13]);

Display the properties of the modulator and verify that the cyclic prefix length changes across symbols.

disp(mod)
  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: [12 10 14 11 13]
               Windowing: false
              NumSymbols: 5
     NumTransmitAntennas: 1

Determine the OFDM modulator data dimensions by using the info method.

Construct an OFDM modulator System object™ with user-specified pilot indices, insert a DC null, and specify two transmit antennas.

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3], ...
    'PilotInputPort',true, ...
    'PilotCarrierIndices',cat(3,[12; 26; 40; 54], ...
    [11; 25; 39; 53]), ...
    'InsertDCNull',true, ...
    'NumTransmitAntennas',2);

Use the info method to find the modulator input data, pilot input data, and output data sizes.

info(hMod)
ans = struct with fields:
     DataInputSize: [48 1 2]
    PilotInputSize: [4 1 2]
        OutputSize: [80 2]

Generate OFDM modulated symbols for use in link-level simulations.

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers, and two symbols having different pilot indices for each symbol.

mod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...
'PilotInputPort',true, ...
'PilotCarrierIndices',[12 11; 26 27; 40 39; 54 55], ...
'NumSymbols',2, ...
'InsertDCNull',true);

Determine input data, pilot, and output data dimensions.

modDim = info(mod);

Generate random data symbols for the OFDM modulator. The structure variable, modDim, determines the number of data symbols.

dataIn = complex(randn(modDim.DataInputSize),randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.

pilotIn = complex(rand(modDim.PilotInputSize),rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modData = step(mod,dataIn,pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

demod = comm.OFDMDemodulator(mod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut, pilotOut] = step(demod,modData);

Verify that, within a tight tolerance, the input data and pilot symbols match the output data and pilot symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...
    pilotIn(:) - pilotOut(:)])) < 1e-10)
isSame = logical
   1

More About

expand all

References

[1] Dahlman, Erik, Stefan Parkvall, and Johan Sköld. 4G LTE/LTE-Advanced for Mobile Broadband. Amsterdam: Elsevier, Acad. Press, 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX. Upper Saddle River, NJ: Prentice Hall, 2007.

[3] Agilent Technologies, Inc., “OFDM Raised Cosine Windowing”, http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm.

[4] Montreuil, L., R. Prodan, and T. Kolze. “OFDM TX Symbol Shaping 802.3bn”, http://www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf. Broadcom, 2013.

[5] “IEEE Standard 802.16TM-2009,” New York: IEEE, 2009.

Extended Capabilities

Introduced in R2014a