Networks and Layers Supported for C++ Code Generation

MATLAB® Coder™ supports code generation for series and directed acyclic graph (DAG) convolutional neural networks (CNNs or ConvNets). You can generate code for any trained convolutional neural network whose layers are supported for code generation. See Supported Layers.

Supported Pretrained Networks

The following pretrained networks, available in Deep Learning Toolbox™, are supported for code generation.

Network NameDescriptionARM® Compute LibraryIntel® MKL-DNN
AlexNet

AlexNet convolutional neural network. For the pretrained AlexNet model, see alexnet.

YesYes
DarkNetDarkNet-19 and DarkNet-53 convolutional neural networks. For the pretrained DarkNet models, see darknet19 and darknet53.YesYes
DenseNet-201

DenseNet-201 convolutional neural network. For the pretrained DenseNet-201 model, see densenet201.

YesYes
GoogLeNet

GoogLeNet convolutional neural network. For the pretrained GoogLeNet model, see googlenet.

YesYes
Inception-ResNet-v2

Inception-ResNet-v2 convolutional neural network. For the pretrained Inception-ResNet-v2 model, see inceptionresnetv2.

YesYes
Inception-v3Inception-v3 convolutional neural network. For the pretrained Inception-v3 model, see inceptionv3.YesYes
MobileNet-v2

MobileNet-v2 convolutional neural network. For the pretrained MobileNet-v2 model, see mobilenetv2.

YesYes
NASNet-Large

NASNet-Large convolutional neural network. For the pretrained NASNet-Large model, see nasnetlarge.

YesYes
NASNet-Mobile

NASNet-Mobile convolutional neural network. For the pretrained NASNet-Mobile model, see nasnetmobile.

YesYes
ResNet

ResNet-18, ResNet-50, and ResNet-101 convolutional neural networks. For the pretrained ResNet models, see resnet18, resnet50, and resnet101.

YesYes
SegNet

Multi-class pixelwise segmentation network. For more information, see segnetLayers.

NoYes
SqueezeNet

Small, deep neural network. For the pretrained SqeezeNet models, see squeezenet.

YesYes
VGG-16

VGG-16 convolutional neural network. For the pretrained VGG-16 model, see vgg16.

YesYes
VGG-19

VGG-19 convolutional neural network. For the pretrained VGG-19 model, see vgg19.

YesYes
Xception

Xception convolutional neural network. For the pretrained Xception model, see xception.

YesYes

Supported Layers

The following layers are supported for code generation by MATLAB Coder for the target deep learning libraries specified in the table.

Once you install the support package MATLAB Coder Interface for Deep Learning Libraries, you can use coder.getDeepLearningLayers to see a list of the layers supported for a specific deep learning library. For example:

coder.getDeepLearningLayers('mkldnn')

Layer NameDescriptionARM Compute LibraryIntel MKL-DNN
additionLayer

Addition layer

YesYes
anchorBoxLayer

Anchor box layer

YesYes
averagePooling2dLayer

Average pooling layer

YesYes
batchNormalizationLayer

Batch normalization layer

YesYes
bilstmLayerBidirectional LSTM layerYesNo
classificationLayer

Create classification output layer

YesYes
clippedReluLayer

Clipped Rectified Linear Unit (ReLU) layer

YesYes
concatenationLayer

Concatenation layer

YesYes
convolution2dLayer

2-D convolution layer

Yes

Yes

crop2dLayer

Layer that applies 2-D cropping to the input

YesYes
CrossChannelNormalizationLayer

Channel-wise local response normalization layer

YesYes

Custom output layers

All output layers including custom classification or regression output layers created by using nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer.

For an example showing how to define a custom classification output layer and specify a loss function, see Define Custom Classification Output Layer (Deep Learning Toolbox).

For an example showing how to define a custom regression output layer and specify a loss function, see Define Custom Regression Output Layer (Deep Learning Toolbox).

Yes

Yes

depthConcatenationLayer

Depth concatenation layer

Yes

Yes

dropoutLayer

Dropout layer

YesYes
eluLayer

Exponential linear unit (ELU) layer

YesYes
fullyConnectedLayer

Fully connected layer

YesYes
globalAveragePooling2dLayer

Global average pooling layer for spatial data

Yes

Yes

globalMaxPooling2dLayer

2-D global max pooling layer

YesYes

groupedConvolution2dLayer

2-D grouped convolutional layer

Yes

  • If you specify an integer for numGroups, then the value must be less than or equal to 2.

Yes

imageInputLayer

Image input layer

  • Code generation does not support 'Normalization' specified using a function handle.

YesYes
leakyReluLayer

Leaky Rectified Linear Unit (ReLU) layer

YesYes
lstmLayer

Long short-term memory (LSTM) layer

YesNo
maxPooling2dLayer

Max pooling layer

YesYes
maxUnpooling2dLayer

Max unpooling layer

NoYes
pixelClassificationLayer

Create pixel classification layer for semantic segmentation

YesYes
regressionLayer

Create a regression output layer

YesYes
reluLayer

Rectified Linear Unit (ReLU) layer

YesYes
sequenceInputLayer

Sequence input layer

YesNo
softmaxLayer

Softmax layer

Yes

Yes

ssdMergeLayer

SSD merge layer for object detection

YesYes

nnet.keras.layer.FlattenCStyleLayer

Flattens activations into 1-D assuming C-style (row-major) order

Yes

Yes

nnet.keras.layer.GlobalAveragePooling2dLayer

Global average pooling layer for spatial data

Yes

Yes

nnet.keras.layer.SigmoidLayer

Sigmoid activation layer

Yes

Yes

nnet.keras.layer.TanhLayer

Hyperbolic tangent activation layer

Yes

Yes

nnet.keras.layer.ZeroPadding2dLayer

Zero padding layer for 2-D input

Yes

Yes

nnet.onnx.layer.ElementwiseAffineLayer

Layer that performs element-wise scaling of the input followed by an addition

YesYes

nnet.onnx.layer.FlattenLayer

Flatten layer for ONNX™ network

Yes

Yes

nnet.onnx.layer.IdentityLayer

Layer that implements ONNX identity operator

Yes

Yes

tanhLayer

Hyperbolic tangent (tanh) layer

Yes

Yes

transposedConv2dLayer

Transposed 2-D convolution layer

Code generation does not support asymmetric cropping of the input. For example, specifying a vector [t b l r] for the 'Cropping' parameter to crop the top, bottom, left, and right of the input is not supported.

Yes

Yes

wordEmbeddingLayer

A word embedding layer maps word indices to vectors

Yes

No

YOLOv2OutputLayer

Output layer for YOLO v2 object detection network

Yes

Yes

YOLOv2ReorgLayer

Reorganization layer for YOLO v2 object detection network

Yes

Yes

YOLOv2TransformLayer

Transform layer for YOLO v2 object detection network

Yes

Yes

Supported Classes

Class

Description

ARM Compute Library

Intel MKL-DNN

yolov2ObjectDetector

  • Only the detect method of the yolov2ObjectDetector is supported for code generation.

  • The roi argument to the detect method must be a code generation constant (coder.const()) and a 1x4 vector.

  • Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs for detect are supported.

  • The labels output of detect is returned as a cell array of character vectors, for example, {'car','bus'}.

Yes

Yes

ssdObjectDetector

Object to detect objects using the SSD-based detector.

  • Only the detect method of the ssdObjectDetector is supported for code generation.

  • The roi argument to the detect method must be a codegen constant (coder.const()) and a 1x4 vector.

  • Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize Name-Value pairs are supported. All Name-Value pairs must be compile-time constants.

  • The channel and batch size of the input image must be fixed size.

  • The labels output is returned as a categorical array.

  • In the generated code, the input is rescaled to the size of the input layer of the network. But the bounding box that the detect method returns is in reference to the original input size.

Yes

Yes

See Also

Related Topics