
Two Hardware-based Deterministic Replay Systems for
Multiprocessors

Derek R. Hower
∗

Computer Sciences
Department
University of

Wisconsin-Madison
drh5@cs.wisc.edu

Pablo Montesinos
†

Computer Science
Department

University of Illinois at
Urbana-Champaign

pmontesi@cs.uiuc.edu

Luis Ceze
‡

Department of Computer
Science and Engineering
University of Washington

luisceze@cs.washington.edu

Mark D. Hill
Computer Sciences

Department
University of

Wisconsin-Madison
markhill@cs.wisc.edu

Josep Torrellas
Computer Science

Department
University of Illinois at
Urbana-Champaign

torrellas@cs.uiuc.edu

ABSTRACT
This is our abstract. This is our abstract. This is our ab-
stract. This is our abstract. This is our abstract. This is our
abstract. This is our abstract. This is our abstract. This
is our abstract. This is our abstract. This is our abstract.
This is our abstract. This is our abstract. This is our ab-
stract. This is our abstract. This is our abstract. This is
our abstract. This is our abstract. This is our abstract.

1. INTRODUCTION
Modern computer systems are inherently nondeterminis-

tic due to a variety of events that occur during an execu-
tion, including I/O, interrupts, and DMA fills. The lack
of repeatability that arises from this nondeterminism can
make it difficult to develop and maintain correct software.
Furthermore, it is likely that the impact of nondeterminism
will only increase in the coming years due to the fact that
commodity systems are now shared memory multiproces-
sors, which, in addition to the sources of nondeterminism in
uniprocessors, are also impacted by the outcome of memory
races among threads.

In an effort to help ease the pain of developing software in
a nondeterministic environment, researchers have proposed
adding deterministic replay capability to computer systems.
A system with a deterministic replay capability can record
sufficient information during an execution to enable a re-

9 The original version of this paper is entitled “XXX" and was
published in (Title of publication, publication date, publisher.)

9∗A note for Derek.
†A note from Pablo.
‡A note from Luis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM 0001-0782/08/0X00 ...$5.00.

player to (later) create an equivalent execution despite the
inherent sources of nondeterminism that exist. With the
ability to replay an execution verbatim, many classes of new
applications may be possible:

Debugging Deterministic replay could be used to provide
the illusion of a time-travel debugger that has the abil-
ity to selectively execute both forward and backward
in time.

Security Deterministic replay could also be used to en-
hance the security of software by providing the means
for an in-depth analysis of an attack, hopefully lead-
ing to rapid patch deployment and a reduction in the
economic impact of new threats.

Fault Tolerance With the ability to replay an execution,
it may also be possible to develop hot-standby systems
for critical service providers using commodity hard-
ware. A virtual machine could, for example, be fed, in
real time, the replay log of a primary server running on
a physically separate machine. The standby VM could
use the replay log to mimic the primary’s execution,
so that in the event that the primary fails, the backup
can take over operation with almost zero downtime.

As existing commercial products have already shown, de-
terministic replay can be achieved with a software-only so-
lution when executing in a uniprocessor environment [11].
This is due, in part, to the fact that sources of nondeter-
minism in a uniprocessor, such as interrupts or I/O, are rel-
atively rare events that take a long time to complete. How-
ever, commodity systems are no longer uniprocessor ma-
chines, leading to the need for an efficient multiprocessor
deterministic replay solution. When executing in a shared
memory multiprocessor environment, memory races, which
can potentially occur on every memory access, are another
source of nondeterminism. All-software solutions exist [3, 6],
but results show that they do not perform well on workloads
that interact frequently. Thus, it is likely that a general so-
lution will require hardware support. To this end, Bacon



F = 1

A = 5 r1 = F

r1 = F

r1 = F

r2 = A

r3 = B

B = 6

F = 0

F = 1

r1 = F
r1 = F

A = 5
B = 6

F = 0

r1 = F
r2 = A
r3 = B

(a) (b)

Figure 1: An example of efficient race recording us-
ing (a) an explicit transitive reduction and (b) inde-
pendent regions. In (a), solid lines between threads
are races written to the log, while dashed lines are
those races implied through transitivity.

and Goldstein [2] originally proposed recording all snooping
coherence transactions, which, while fast, produced a serial
and voluminous log.

Xu, et al. [10] modernized hardware support for multi-
processor deterministic replay in general and memory race
recording in particular. A memory race recorder is responsi-
ble for logging enough information to reconstruct the order
of all fine-grained memory interleavings that occur during
an execution. To reduce the amount of information that
needs to be logged (so that longer periods can be recorded
for a fixed hardware cost), the system proposed by Xu, et
al. logged only those races that cannot be implied through
transitivity, i.e. those races not implied through the com-
bination of a previously logged ordering an sequential pro-
gram semantics. Figure 1a illustrates a transitive reduction.
Inter-thread races between instructions accessing locations
A and B, respectively, are implied by the recorded race for
location F.

While both the original [8] and follow-on [9] work by Xu,
et al. were successful in achieving efficient log compression
(~1byte/1000 instructions executed), they required a large
amount of hardware state, on the order of an additional
L1 cache per core, in order to do so. Subsequent work by
Narayanasamy, et al. [?] on the Strata race recorder re-
duced this hardware requirement but, as results in [4] show,
may not scale well as the number of hardware contexts in
a system increases. This is largely because Strata writes
global information to its log entries that contains a compo-
nent from each hardware thread context in the system.

A key observation, discovered independently by the au-
thors of this paper a the Universities of Illinois and Wiscon-
sin, is that by focusing on regions of independence, rather
than on individual dependencies, an efficient and scalable
memory race recorder can be made without sacrificing log-
ging efficiency. Figure 1b illustrates this notion by breaking
the execution of Figure 1a into an ordered series of indepen-
dent execution regions. Because intra-thread dependencies
are implicit and do not need to be recorded, the execution
in Figure 1b can be completely described by the three inter-
thread dependencies, which is the same amount of informa-
tion required after a transitivity reduction shown in Figure

1a.
The authors of this paper have developed two different

systems, called DeLorean and Rerun, that both exploit the
same independence observation described above. These sys-
tems present different tradeoffs in terms of logging efficiency
and implementation complexity. Rerun can be implemented
with small modifications to existing memory system archi-
tectures but writes a larger log than DeLorean. DeLorean
can achieve a greater log size reduction but requires novel
hardware to do so.

2. RERUN
Rerun exploits the concept of episodic race recording to

achieve efficient logging with only small modifications to ex-
isting memory system architectures. The Rerun race recorder
does not interfere with a running program in any way; it is
an impartial observer of a running execution, and as such
avoids avoids artificially perturbing the execution under ob-
servation.

2.1 Episodic Memory Race Recording
This section develops insights behind Rerun. It motivates

Rerun with an example, gives key definitions, and explains
how Rerun establishes and orders episodes.

2.1.1 Motivating Example and Key Ideas
Consider the execution in Figure 2 that highlights two

threads i and j executing on a multicore system. Dynamic
instructions 1-4 of thread i happen to execute without in-
teracting with instructions running concurrently on thread
j (or thread k). We call these instructions, collectively la-
beled E1, an episode in thread i’s execution. Similarly, in-
structions 1-3 of thread j execute without interaction and
constitute an episode E2 for thread j. As soon as a thread’s
episode ends, a new episode begins. Thus, every instruction
execution is contained in an episode, and episodes cover the
entire execution (right side of Figure 2.)

Rerun must solve two subproblems in order to ensure that
enough episodic information is recorded to enable determin-
istic replay of all memory races. First, it must determine
when an episode ends, and, by extension, when the next
one begins. To remain independent, an episode E must
end when another thread issues a memory reference that
conflicts with references made in episode E. Two memory
accesses conflict if they reference the same memory block,
are from different threads, and at least one is a write. For
example, episode E1 in Figure 2 ends because threads j ac-
cesses the variable F that was previously written (i.e. F is
in the write set of E1). Formally, for all combinations of
episodes E and F in an execution, the no-conflict condition
of Equation 1 must hold.

[WE ∩ (RE ∪WF ) = ∅] ∧ [RE ∩WF = ∅] (1)

Importantly, while an episode must end to avoid conflicts,
episodes may end early for any or no reason. In Section 2.2,
we will ease implementation cost by ending some episodes
early.

Second, an episodic recorder must establish an ordering
of episodes among threads. Rerun does so using Lamport
scalar clocks [5], which is a technique that guarantees the
timestamp of any episode E executing on thread i has a
scalar value that is greater than the timestamp of any episode



r5 := X
r4 := Q
S := r3
r5 := X

F := 1
r1 := A
B:= 23
F := 0

r6 := E
D := r7
S := r4
C := r3

W := r10

Y := 54
T := r3
W := r4
r4 := U
r3 := P
r2 := I
H := r4
r8 := X
r9 := Y
Q := r8

D := r7
r1 := F
r2 := B

Z := 34
r3 := 54

Ti Tj

...
1:  F = 1
2:  r1 = A
3:  B = 23
4:  F = 0

Initial State: 1:  D = r7
2:  r1 = F
3:  r2 = B

R: {A} W: {B,F}
REFS: 4

Timestamp: 43

R: {...} W: {...}
REFS: 97

Timestamp: 5

R: {B,F} W: {D}
REFS: 3

Timestamp: 44

R: ∅ W: ∅
REFS: 0

Timestamp: 44
E2

E1

Ti Tj

Figure 2: A example of episodic recording. Dashed
lines indicate episode boundaries. In the blown up
diagram of threads i and j, the shaded boxes show
the state of the episode as it ends, including the read
and write sets, memory reference counter, and the
timestamp. The shaded box in the last episode of
thread i shows the initial episode state.

on which E is dependent and less than the timestamp of any
episode dependent on E. In our example, since the episode
E1 ends with a timestamp of 43, the subsequent episode ex-
ecuting on thread j (E2), which uses block F after thread i,
must be assigned a timestamp of (at least) 44.

The specific Rerun mechanism meets three conditions suf-
ficient for a Lamport scalar clock implementation:

1. When an episode E begins, its timestampE begins
with a value one greater than the timestamp of the
previous episode executed by threadE (or 0 if episode
E is threadE ’s first episode).

2. When an episode E adds a block to its read set RE that
was most-recently in the write set WD of completed
episode D, it sets its timestampE to
maximum[timestampE , timestampD+1].

3. When an episode E adds a block to its write set WE

that was most-recently in the write set WD0 of com-
pleted episode D0 or in the read set of any episode
D1...DN , it sets its timestampE to
maximum[timestampE , timestampD0 + 1,
timestampD1 + 1, ..., timestampDN + 1].

When each episode E ends, Rerun logs its timestampE ,
along with referencesE , in a per-thread log. The Lam-
port clock algorithm ensures that the execution order of all
conflicting episodes corresponds to monotonically increasing
timestamps. Two episodes can only be assigned the same
timestamp if they do not conflict and, thus, can be replayed
in any alternative order with affecting replay fidelity.

A replayer (not shown) uses information about episode
duration and ordering to reconstruct an execution with the
same behavior. If episodes are replayed in timestamp order,

Table 1: Base System Configuration
Cores 16, in-order, 3GHz
L1 Caches Split I&D, Private, 32K 4-way set

associative, write-back, 64B lines,
LRU replacement, 3 cycle hit

L2 Caches Unified, Shared, Inclusive, 8M 8-
way set associative, write-back, 16
banks, LRU replacement, 37 cycle
hit

Directory Full bit vector in L2
Memory 4G DRAM, 300 cycle access
Coherence MESI directory, silent replacements
Consistency Model Sequential Consistency (SC)

then the replayed execution will be logically equivalent to
the recorded execution.

2.2 Rerun Implementation
Here we develop a Rerun implementation for a system

based on a cache-coherent multicore chip, with key parame-
ters shown in Table 1. Though we describe Rerun in terms
of a specific base system, the mechanism can be extended
to other systems, including those with a TSO memory con-
sistency model, out-of-order cores, multithreaded cores, al-
ternate cache designs, and snooping coherence. Details of
the changes needed to accommodate these alternate archi-
tectures can be found in the original paper [4].

2.2.1 Rerun Hardware
As Figure 3 depicts, Rerun adds modest hardware state

to the base system. To each core, Rerun adds:

• Read and Write Bloom filters, WF and RF , to track
the current episode’s write and read sets (e.g., 32 and
128 bytes, respectively),

• A Timestamp Register, TS, to hold the Lamport Clock
of the current episode executing on the core (e.g., four
bytes), and

• A Memory Reference Counter, REFS, to record the
current episode’s references (e.g., two bytes).

To each L2 cache bank, Rerun also adds a “memory”
timestamp register, MTS (e.g., four bytes). This register
holds the maximum of all timestamps for victimized blocks
that map to its bank. A victimized block is one replaced
from an L1 cache, and its timestamp is the timestamp of
the core at the time of victimization.

Finally, coherence response messages - data, acknowledg-
ments, and writebacks - carry logical timestamps. Book-
keeping state, such as a per-core pointer to the end of its
log, is not shown.

2.2.2 Rerun Operation
During execution, Rerun monitors the no-conflict equa-

tion by comparing the addresses of incoming coherence re-
quests to those in RF and WF . When a conflict is detected,
Rerun writes the tuple <TS, REFS> to a per-thread log,
then begins a new episode by resetting REFS, WF , and
RF , and by incrementing the local timestamp TS according
to the algorithm in Section 2.1.



L2 
Bank   

0 ...

L2 
Bank 

14

L2 
Bank 

15

Interconnect

Core    
0

Core    
1

Core    
14

Core    
15...

DRAM
 

2-3

DRAM
 

0-1

L2 
Bank   

1

Data 
Array

Directory

Coherence 
Controller

Tags

MTS

Pipeline

Rerun 
State

Rerun State
Coherence 
Controller

L1 I L1D
Write Filter (WF)
Read Filter (RF)
Timestamp (TS)

References (REFS)

Figure 3: Rerun Hardware

By gracefully handling virtualization events, Rerun allows
programmers to view logs as per thread, rather than per
core. At a context switch, the OS ends the core’s current
episode by writing REFS and TS state to the log. When
the thread is rescheduled, it begins a new episode with reset
WF , RF , and REFS, and a timestamp equal to the max
of the last logged TS for that thread and the TS of the
core on which the thread is rescheduled. Similarly, Rerun
can handle paging by ensuring that TLB shootdowns end
episodes.

Rerun also ends episodes when implementation resources
are about to be exhausted. Ending episodes just before 64K
memory references, for example, allows REFS to be logged
in two bytes.

2.3 Evaluation

2.3.1 Methods
We evaluate the Rerun recording system using the Wis-

consin GEMS [7] full system simulation infrastructure. The
simulator configuration matches the baseline shown in Ta-
ble 1 with the addition of Rerun hardware support. Experi-
ments were run using the Wisconsin Commercial Workload
Suite [1]. We tested Rerun with these workloads and a mi-
crobenchmark, racey, that uses number theory to produce an
execution whose outcome is highly sensitive to memory race
ordering (available at www.cs.wisc.edu/~markhill/racey.html).

2.3.2 Rerun Performance
Figure 4 shows the performance of Rerun on all four com-

mercial workloads. Rerun achieves an uncompressed log size
of about 4 bytes logged per 1000 instructions. Importantly,
we notice little variation among the log size of each workload,
leading us to believe that Rerun can perform well under a
variety of memory access patterns.

We show the relative performance of Rerun in comparison
to the prior state of the art in memory race recording in
Figure 5. Rerun achieves a log size comparable to the most
efficient prior recorder (RTR [9]), but does so with a fraction
of the hardware cost (~0.2KB per core vs. 24KB per core).
Like RTR, and unlike Strata [?], Rerun scales well as the
number of cores in the system increases, due, in part, to
the fact that Rerun and RTR both write thread-local log
entries rather than a global entry with a component from
each thread.

Figure 4: Rerun Absolute Performance

Figure 5: Comparison to RTR and Strata



3. CONCLUSION
Rerun uses episodes to efficiently record the outcome of

memory races, achieving a log size comparable to the best
prior state of the art while needing a small amount of hard-
ware state (166 bytes/core). Rerun can be implemented
with only minimal changes to a conventional memory sys-
tem, and can generate a race log without perturbing the
execution under observation.

While Rerun does well with nearly conventional hardware,
the next section explores additional opportunities afforded
by more substantial hardware changes.

4. DELOREAN
DeLorean goes here.

5. CONCLUSIONS
[?] These are our conclusions. These are our conclusions.

These are our conclusions. These are our conclusions. These
are our conclusions. These are our conclusions. These are
our conclusions. These are our conclusions. These are our
conclusions. These are our conclusions. These are our con-
clusions. These are our conclusions. These are our conclu-
sions. These are our conclusions. These are our conclusions.
These are our conclusions. These are our conclusions. These
are our conclusions. These are our conclusions. These are
our conclusions. These are our conclusions. These are our
conclusions. These are our conclusions. These are our con-
clusions. These are our conclusions. These are our conclu-
sions. These are our conclusions. These are our conclusions.
These are our conclusions. These are our conclusions. These
are our conclusions. These are our conclusions. These are
our conclusions. These are our conclusions. These are our
conclusions. These are our conclusions. These are our con-
clusions. These are our conclusions. These are our conclu-
sions. These are our conclusions. These are our conclusions.
These are our conclusions. These are our conclusions. These
are our conclusions. These are our conclusions. These are
our conclusions. These are our conclusions. These are our
conclusions. These are our conclusions. These are our con-
clusions. These are our conclusions. These are our conclu-
sions. These are our conclusions.

6. ACKNOWLEDGMENTS
We thank David Patterson for suggesting this article and

Norman Jouppi for writing an outsider introduction. Hower
and Hill thank those acknowledged in the Rerun paper, in-
cluding NSF grants CCR-0324878, CNS-0551401, and CNS-
0720565. Hill has a significant financial interest in Sun Mi-
crosystems. DELOREAN ACKS HERE.

7. REFERENCES
[1] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper,

M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A.
Wood. Evaluating non-deterministic multi-threaded
commercial workloads. In Proc. of the 5th Workshop
on Computer Architecture Evaluation Using
Commercial Workloads.

[2] D. F. Bacon and S. C. Goldstein. Hardware-assisted
replay of multiprocessor programs.

[3] G. W. Dunlap, D. Lucchetti, P. M. Chen, and
M. Fetterman. Execution replay on multiprocessor

virtual machines. In International Conference on
Virtual Execution Environments (VEE), 2008.

[4] D. R. Hower and M. D. Hill. Rerun: Exploiting
episodes for lightweight race recording. In Proc. of the
35th Annual Intnl. Symp. on Computer Architecture.

[5] L. Lamport. Time, clocks and the ordering of events in
a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[6] T. J. Leblanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE
Transactions on Computers, C-36(4):471–482, Apr.
1987.

[7] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset. Computer Architecture News, pages 92–99,
Sept. 2005.

[8] M. Xu, R. Bodik, and M. D. Hill. A “flight data
recorder” for enabling full-system multiprocessor
deterministic replay. In Proc. of the 30th Annual Intnl.
Symp. on Computer Architecture.

[9] M. Xu, R. Bodik, and M. D. Hill. A regulated
transitive reduction (rtr) for longer memory race
recording. In Proc. of the 12th Intnl. Conf. on
Architectural Support for Programming Languages and
Operating Systems.

[10] M. Xu, R. Bodik, and M. D. Hill. A hardware memory
race recorder for deterministic replay. IEEE Micro,
27(1), Jan/Feb 2007.

[11] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
and B. Weissman. Retrace: Collecting execution trace
with virtual machine deterministic replay. In
Proceedings of the 3rd Annual Workshop on Modeling,
Benchmarking and Simulation, June 2007.


