Chris & Amy:  I don’t have my graphs in here, figured that you could do that quicker/easier than I could in the final version.  Also:  our graphs say “per minute” when they really ought to say “per second”.  We’ve got the units wrong – think this was my fault originally.  My comments to you are surrounded by {} in the text.

Implementation
In order to determine the effectiveness of our four scheduling policies, we ran simulations of each policy under varying job arrival rates.  All other properties of the jobs were held constant. We varied the job arrival rate from 0.2 jobs per second to 0.62 jobs per second in 0.02 increments.  Thus, there were 22 workloads for each of four scheduling policies, yielding 88 runs overall.  The schedulers used the same workload for each increment of the arrival rate.  These jobs were submitted to Condor.

The following statistics were collected for each run of the scheduler: mean queuing time, the variance of the queuing time, and the utilization of the system.  We define utilization as the sum of the node times of all the jobs, divided by the total running time times the number of nodes in the system.  The result is a measure of how well the scheduler is able to pack jobs together in the system.  A high utilization means that there are few “holes” where processors sit idle.

Results

Overall, several trends emerge in the graphs of the results.  Near an arrival rate of 0.2 jobs per second, all of the scheduling policies have a very low mean queuing time.  The jobs are not arriving quickly enough to put any sort of load on the system, so all the scheduling policies perform the same.  As the job arrival rate increases, the scheduling policies “break down” one by one.  This is shown by a sudden increase in both the mean queuing time and the variance of the queuing time.  The K-P{how do you spell Kunchen-Pollecheck?  damn.} equation predicts this behavior exactly.  The KP curve is gradually increasing until a certain point, until it sharply curves upwards towards infinity.  This is the same behavior we see for our scheduling policies. {C&A: I’ve got cool graphs of this from that project way back when…let me know if you want to use them….it might be cool to show our queuing time graph next to or overlaid by KP.}

The system utilization graph tells the same story.  At a low arrival rate, all the scheduling policies utilize the system the same amount.  As the system load gets larger, however, the scheduling policies become less efficient one at a time.  As one would expect, these breakdowns happen in the same places and in the same order as they do in the mean queuing time breakdowns.  

We can say that the best policy is the one that handles the heaviest system load before it becomes saturated.  This saturation is shown when the queuing time shoots up to large values, and is also apparent in the “leveling off” of the utilization of the system.  Conversely, the worst policy is the one that becomes saturated before the others.

Using this criterion, the best scheduling policy is the basic FCFS with backfill that we used in project 4.  The system doesn’t approach saturation until around 0.55 jobs per second.  It also has the best utilization at high workloads.  Coming in second is the scheduling with uniform priority.  It becomes saturated around 0.45 jobs per second.  This result is not surprising.  Adding another criteria to the scheduling of jobs only adds complexity to the system.  The scheduler has to obey a rule that can lead to slightly less optimal placement of jobs – it has to make sure jobs with high priority go before those with low priority.  Performance suffers, but the unmeasurable benefit is that the system has the ability to assign priority to jobs.

Coming in last was the scheme that assigned priority based on the node-time of the job.  Small jobs got a higher priority than large jobs.  This amounts to a Shortest Job First scheduler.  It shows abysmal performance, becoming saturated around 0.38 jobs per second.  The utilization levels off under a very poor 70%.  The reason for these results is obtained upon looking at the graphical output of the scheduler.  What happens is that near saturation, the large jobs continually get bumped up by smaller jobs.  This keeps happening until the end of the run, where the large jobs finally get to start, one after the other.  The effect is that of a sprinkling of small jobs with lots of holes (but the holes aren’t big enough for large jobs) at the beginning of a run, and a stack of large jobs taking place after jobs have stopped arriving.  These jobs are all larger than 32 nodes after a certain point, meaning that they have to run sequentially, wasting yet more space.  In short, this scheduling policy is great if you’ve got a small job, but awful if you have a large job, and the system suffers as a whole.

In between the SJF and the priority based scheduler was the scheduler that takes both the priority and the node-time of the job, multiplies them together, and uses that as a priority.  The resulting hybrid behaves just like a hybrid should – its performance is solidly in between the two algorithms it was derived from.  Taking node-time into account appears to worsen the priority based scheduler, while the randomness of the priority makes it perform better than straight SJF scheduling.

