Parallelizing PLS; proposed process:
· "baseDir": Location where all code (.m files) and the response and predictor matrices are stored.

· "tempDir": Location where all temporary files are stored. Is 'cleaned' after each iteration.

· "predictor matrix": a CSV file containing predictor variables. This file shrinks by one column as each iteration proceeds. The entire process stops when the file is left with only one column.

· "response matrix": a CSV file containing response variables. This file always stays the same.
Workflow:

1. [PERL?] Check if predictor matrix (CSV) has more than two columns (The first column is the ID, Yes: proceed; No: terminate process.)
2. [PERL?] Chop the predictor matrix into as many files as columns and save into "tempDir". Each chopped matrix (CSV file) has one variable column dropped.

3. (Single) execute "sendRun.m"

a. "sendRun.m" checks "tempDir" and creates an individual run file ("runFile_{variable number}.mat") for each chopped matrix (CSV file) it finds in "tempDir".

b. Note: "sendRun.m" calls createRunFile.m as a function.

4. (Parallel) execute "execRun.m" with "baseDir","tempDir" and variable number as inputs ("varNum", is the number of CSV files just chopped and dropped into "tempDir".)

a. "execRun.m" finds the run file "runFile_[varNum].mat" in "tempDir" and calls "runPLS.m" with appropriate parameters.

b. This step probably spawns "varNum" number of processes in parallel.

5. (Single) execute "collateOutFiles.m" with "tempDir" as argument. This function gets results (.mat files) produced by "execRun.m", analyzes them, and returns the position of the variable to be dropped (say column 'X'). It also saves the collated current run statistics to "baseDir".

6. Delete all files from "tempDir".

7. [PERL?] Drop variable number 'X' returned by "collateRun.m" from the base predictor matrix in "baseDir".
8. Go to step 1.

