
Using context and tikz
terminals for gnuplot in ConTEXt

Mojca Miklavec, 2013–04–19

With special thanks to Hans Hagen, Taco Hoekwater, Aditya Mahajan, Marco Patzer
and others.

1 Requirements 1
2 Installation 1
3 Simple examples 3
4 Terminal options 8
5 Comparison of supported terminals 10
6 Known bugs 11

1 Requirements

1. Any ConTEXt installation (ConTEXt Distribution, TEX Live 2011 or later, …).
2. Gnuplot 4.6.0 or later with context and/or tikz terminal built in. The gnuplot

binary (or gnuplot.exe under Windows) has to be in PATH.
3. Gnuplot module for ConTeXt.
4. For running gnuplot on the fly or when using ConTEXt mkii, you need to have

write18 enabled. Usually this can be set with shell_escape = t in texmf.cnf.

2 Installation

2.1 Gnuplot

As long as you have gnuplot≥ 4.6.0 installed, you should have the context terminal
built in. If not, you might want to compile gnuplot from CVS sources:

cd gnuplot

./prepare

./configure [--prefix=$PWD/install]
make
make install

The option --prefix=$PWD/install (but you can choose anything) – if chosen –
will install gnuplot locally even if you lack root permissions. Just make sure that
you add the resulting binary to PATH.

Once you have the gnuplot binary running, you can check the list of supported
terminals by typing

gnuplot> set term

into gnuplot shell. Make sure that it lists:

context ConTeXt with MetaFun (for PDF documents)
tikz Lua PGF/TikZ terminal for TeX and friends

The module also supports some other terminals like png, metapost, postscript
and pdf, but their integration with ConTEXt is limited.

2.2 t-gnuplot module for ConTEXt

Under ConTEXt Distribution you can install the gnuplot module and TikZ with an
additional switch when running first-setup, for example:

./first-setup.sh --modules=gnuplot,tikz

If you have installed a complete or context scheme under TEX Live, gnuplot module
and TikZ might already be installed. Else you can use:

tlmgr install context-gnuplot
tlmgr install pgf

Under MiKTEX the module is installed automatically when it is first used (but at the
moment of writing MiKTEX doesn’t support ConTEXt).

3 Simple examples

3.1 Calling gnuplot directly

Let’s first create a simple file (we will call it example.plt, but you may choose any
name) with the contents below.

For context terminal:

set term context size 5in,3in standalone
set output "fullpage-example.tex"
plot sin(x)
plot cos(atan(x))*sin(x)

For tikz terminal:

set term tikz context size 5in,3in standalone createstyle
set output "fullpage-example.tex"
plot sin(x)
plot cos(atan(x))*sin(x)

In both cases the option standalone is used to create a complete ConTEXt document
with one plot per page, including header and \starttext … \stoptext, so that it
can be compiled directly. The option createstyle is used to create three files with
required macros in working directory1.

Both terminals should give you almost equivalent results apart from default plot
size. You are highly encouraged to specify the desired plot size explicitly. You may
scale the plot later on, but you probably want to get the desired proportions from
the start.

1 An alternative is to place those three files somewhere where kpathsea can find them and omit the
option createstyle, just make sure that the versions of tikz terminal and the files in your TEX tree
remain compatible.

Run gnuplot with

gnuplot example.plt

and compile the result with any of the following three commands (depending on
your preferred engine):

context fullpage-example.tex # for LuaTEX
texexec fullpage-example.tex # for pdfTEX
texexec --xtx fullpage-example.tex # for XƎTEX

They are almost equivalent except that XƎTEX lacks some advanced features (some
patterns). The only major difference is the choice of fonts. If you want to typeset
Arabic labels or use system fonts, you will probably want to choose LuaTEX or XƎTEX.
If you are using many graphical elements (3D plots, images, …), you might want to
go for LuaTEX.

You should get a pdf document with two full-page plots that you can include into
your document with \externalfigure[fullpage-example][page=2] for exam-
ple.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-10 -5 0 5 10

cos(atan(x))*sin(x)

Figure 1 Second page from fullpage-example,
included with \externalfigure

3.2 Calling gnuplot from TEX

As you can see you will always get Latin Modern font at 12pt unless you explic-
itly change it with header "\setupbodyfont[somefontname,10pt]" or with font
"somefontname,10pt". An easier way to make sure that the same font is used and
to avoid having to call gnuplot manually is to simply type the gnuplot code inside
your ConTEXt document:

\usemodule
[gnuplot]

\setupGNUPLOTterminal
[context]
[width=5in,height=2.5in,fontscale=0.9]

\setupGNUPLOTterminal
[tikz]
[width=5in,height=2.5in,fontscale=0.9]

\starttext

\startGNUPLOTinclusions
set samples 400
set key left Left reverse
\stopGNUPLOTinclusion

\startGNUPLOTscript[myfunction]
set zeroaxis
set format y "%.1f"
plot [-4:2][0:2] 1 t '' lt 0, exp(x) t 'e^x' lt 1 lw 3
plot cos(atan(x))*sin(x) t '$\cos(\arctan(x))\sin(x)$' lw 3 lc 3
\stopGNUPLOTscript

\placefigure{none}{\useGNUPLOTgraphic[myfunction][2]}

\setupGNUPLOT
[terminal=tikz]

\placefigure{none}{\useGNUPLOTgraphic[myfunction][1]}

\stoptext

With \setupGNUPLOT[terminal=<termname>] you can select any supported gnu-
plot terminal before drawing a plot.

With \setupGNUPLOT[<termname>][<option>=<value>] you can set some termi-
nal-specific options.

Anything inside \startGNUPLOTinclusions... \stopGNUPLOTinclusion will be
applied to every plot.

The command \startGNUPLOTscript[<name>] creates new plots that can be in-
cludedwith \useGNUPLOTgraphic[<name>][<number>][<option>=<value>]. Both
the number of plot and additional parameters (like width=.7\textwidth for exam-
ple) are optional.

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-10 -5 0 5 10

cos(arctan(u�)) sin(u�)

Figure 2 Framed second plot using context terminal

0.0

0.5

1.0

1.5

2.0

-4 -3 -2 -1 0 1 2

u�u�

Figure 3 Framed first plot using tikz terminal

3.3 Including pre-generated plots

Instead of defining \startGNUPLOTscript and letting ConTEXt call gnuplot on the
fly, you can also run gnuplot in advance and only include the resulting filename.tex.
This is something that you might want to do when running calculation-intensive
gnuplot scripts which take a long time.

You can follow the same steps as in section 3.1, except that you should not specify
the standalone flag (and you should not compile the plot, only the main document).

The resulting file can be included2 with

\processGNUPLOTfile[<name>][<filename.tex>]

and you can get the graphic with the same command as usual:

\useGNUPLOTgraphic[<name>]

plus any optional parameters.

2 \include filename.tex won’t work

4 Terminal options

4.1 context

set term context { default }
{ defaultsize | size <xsize> {in|cm}, <ysize> {in|cm}

}
{ input | standalone }
{ timestamp | notimestamp }
{ noheader | header "<header>" }
{ color | colour | monochrome }
{ rounded | mitered | beveled }
{ round | butt | squared }
{ dashed | solid }
{ dashlength | dl <DL> }
{ linewidth | lw <LW> }
{ fontscale <fontscale> }
{ mppoints | texpoints }
{ inlineimages | externalimages }
{ defaultfont | font {<fontsize>} |
font "<fontname>{,<fontsize>}" {fontsize} }

4.2 tikz

set term tikz { latex | tex | context }
{ size <x>{unit},<y>{unit} }
{ scale <x>,<y> }
{ nofulldoc | nostandalone | fulldoc | standalone }
{ color | monochrome }
{ dashed | solid }
{ nooriginreset | originreset }
{ nogparrows | gparrows }
{ nogppoints | gppoints }
{ picenvironment | nopicenvironment }
{ noclip | clip }
{ notightboundingbox | tightboundingbox }
{ background "<colorpec>" }
{ plotsize <x>{unit},<y>{unit} }
{ charsize <x>{unit},<y>{unit} }
{ font "<fontdesc>" }
{ fontscale <fontscale> }
{ {preamble | header} "<preamble_string>" }
{ tikzplot <ltn>,... }
{ notikzarrows | tikzarrows }
{ rgbimages | cmykimages }
{ noexternalimages | externalimages }
{ bitmap | nobitmap }
{ providevars <var name>,... }
{ createstyle }
{ help }

5 Comparison of supported terminals

The gnuplot module for ConTEXt supports the following terminals:

• bitmap terminals
− png, pngcairo

• vector terminals
− context, tikz
− metapost, postscript, pdf, pdfcairo

Figure 4 An example of graphic generated with png terminal

6 Known bugs

6.1 Buggy implementation in ConTEXt module

• Point sizes of TEX symbols for points have to be fine-tuned for proper size.
• Points don’t scale properly. Line widths should not be scaled when bigger points

are requested. Also, when thicker lines are used, points don’t inherit that thick-
ness. The reason is buggy implementation that stores all points as pictures in
the beginning instead of drawing each point separately when that is requested.

• Patterns fills are a semi-hack. They are composed out of little tiles and drawn
next to each other. This doesn’t look properly when rendered. This also means
that line widths don’t scale properly.

• MetaPost could be highly optimized. In particular the transparency should be
handled more efficiently.

6.2 Support in ConTEXt core

• Switching to a different font for font labels doesn’t work in mkiv and uses an
ugly hack in mkii.

• External images don’t work in mkiv at the moment. Use images=inline (in-
lineimages in gnuplot). This is because the only acceptable mkii syntax is ex-
ternalfigure "name.png", whilemkiv requires draw externalfigure "name.png".
This has to be fixed in ConTEXt core.

• Transparent inline images are not yet supported.
• There might be still some memory leaks in MetaPost. The major ones were fixed.

6.3 Limitations

• Plots with many graphical elements don’t work in mkii since TEX runs out of
memory.

• Inline bitmap images are not (and might never be) supported in mkii. If you
want to use external bitmap images, use the option externalimages in context
terminal (images=external in ConTEXt).

