<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">"""
Low-level BLAS functions (:mod:`scipy.linalg.blas`)
===================================================

This module contains low-level functions from the BLAS library.

.. versionadded:: 0.12.0

.. warning::

   These functions do little to no error checking.
   It is possible to cause crashes by mis-using them,
   so prefer using the higher-level routines in `scipy.linalg`.

Finding functions
-----------------

.. autosummary::
   :toctree: generated/

   get_blas_funcs
   find_best_blas_type

BLAS Level 1 functions
----------------------

.. autosummary::
   :toctree: generated/

   caxpy
   ccopy
   cdotc
   cdotu
   crotg
   cscal
   csrot
   csscal
   cswap
   dasum
   daxpy
   dcopy
   ddot
   dnrm2
   drot
   drotg
   drotm
   drotmg
   dscal
   dswap
   dzasum
   dznrm2
   icamax
   idamax
   isamax
   izamax
   sasum
   saxpy
   scasum
   scnrm2
   scopy
   sdot
   snrm2
   srot
   srotg
   srotm
   srotmg
   sscal
   sswap
   zaxpy
   zcopy
   zdotc
   zdotu
   zdrot
   zdscal
   zrotg
   zscal
   zswap

BLAS Level 2 functions
----------------------

.. autosummary::
   :toctree: generated/

   cgemv
   cgerc
   cgeru
   chemv
   ctrmv
   csyr
   cher
   cher2
   dgemv
   dger
   dsymv
   dtrmv
   dsyr
   dsyr2
   sgemv
   sger
   ssymv
   strmv
   ssyr
   ssyr2
   zgemv
   zgerc
   zgeru
   zhemv
   ztrmv
   zsyr
   zher
   zher2

BLAS Level 3 functions
----------------------

.. autosummary::
   :toctree: generated/

   cgemm
   chemm
   cherk
   cher2k
   csymm
   csyrk
   csyr2k
   dgemm
   dsymm
   dsyrk
   dsyr2k
   sgemm
   ssymm
   ssyrk
   ssyr2k
   zgemm
   zhemm
   zherk
   zher2k
   zsymm
   zsyrk
   zsyr2k

"""
#
# Author: Pearu Peterson, March 2002
#         refactoring by Fabian Pedregosa, March 2010
#

from __future__ import division, print_function, absolute_import

__all__ = ['get_blas_funcs', 'find_best_blas_type']

import numpy as _np

from scipy.linalg import _fblas
try:
    from scipy.linalg import _cblas
except ImportError:
    _cblas = None

# Expose all functions (only fblas --- cblas is an implementation detail)
empty_module = None
from scipy.linalg._fblas import *
del empty_module

# 'd' will be default for 'i',..
_type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'}

# some convenience alias for complex functions
_blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2',
               'cdot': 'cdotc', 'zdot': 'zdotc',
               'cger': 'cgerc', 'zger': 'zgerc',
               'sdotc': 'sdot', 'sdotu': 'sdot',
               'ddotc': 'ddot', 'ddotu': 'ddot'}


def find_best_blas_type(arrays=(), dtype=None):
    """Find best-matching BLAS/LAPACK type.

    Arrays are used to determine the optimal prefix of BLAS routines.

    Parameters
    ----------
    arrays : sequence of ndarrays, optional
        Arrays can be given to determine optimal prefix of BLAS
        routines. If not given, double-precision routines will be
        used, otherwise the most generic type in arrays will be used.
    dtype : str or dtype, optional
        Data-type specifier. Not used if `arrays` is non-empty.

    Returns
    -------
    prefix : str
        BLAS/LAPACK prefix character.
    dtype : dtype
        Inferred Numpy data type.
    prefer_fortran : bool
        Whether to prefer Fortran order routines over C order.

    """
    dtype = _np.dtype(dtype)
    prefer_fortran = False

    if arrays:
        # use the most generic type in arrays
        dtypes = [ar.dtype for ar in arrays]
        dtype = _np.find_common_type(dtypes, ())
        try:
            index = dtypes.index(dtype)
        except ValueError:
            index = 0
        if arrays[index].flags['FORTRAN']:
            # prefer Fortran for leading array with column major order
            prefer_fortran = True

    prefix = _type_conv.get(dtype.char, 'd')
    if dtype.char == 'G':
        # complex256 -&gt; complex128 (i.e., C long double -&gt; C double)
        dtype = _np.dtype('D')
    elif dtype.char not in 'fdFD':
        dtype = _np.dtype('d')

    return prefix, dtype, prefer_fortran


def _get_funcs(names, arrays, dtype,
               lib_name, fmodule, cmodule,
               fmodule_name, cmodule_name, alias):
    """
    Return available BLAS/LAPACK functions.

    Used also in lapack.py. See get_blas_funcs for docstring.
    """

    funcs = []
    unpack = False
    dtype = _np.dtype(dtype)
    module1 = (cmodule, cmodule_name)
    module2 = (fmodule, fmodule_name)

    if isinstance(names, str):
        names = (names,)
        unpack = True

    prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype)

    if prefer_fortran:
        module1, module2 = module2, module1

    for i, name in enumerate(names):
        func_name = prefix + name
        func_name = alias.get(func_name, func_name)
        func = getattr(module1[0], func_name, None)
        module_name = module1[1]
        if func is None:
            func = getattr(module2[0], func_name, None)
            module_name = module2[1]
        if func is None:
            raise ValueError(
                '%s function %s could not be found' % (lib_name, func_name))
        func.module_name, func.typecode = module_name, prefix
        func.dtype = dtype
        func.prefix = prefix  # Backward compatibility
        funcs.append(func)

    if unpack:
        return funcs[0]
    else:
        return funcs


def get_blas_funcs(names, arrays=(), dtype=None):
    """Return available BLAS function objects from names.

    Arrays are used to determine the optimal prefix of BLAS routines.

    Parameters
    ----------
    names : str or sequence of str
        Name(s) of BLAS functions without type prefix.

    arrays : sequence of ndarrays, optional
        Arrays can be given to determine optimal prefix of BLAS
        routines. If not given, double-precision routines will be
        used, otherwise the most generic type in arrays will be used.

    dtype : str or dtype, optional
        Data-type specifier. Not used if `arrays` is non-empty.


    Returns
    -------
    funcs : list
        List containing the found function(s).


    Notes
    -----
    This routine automatically chooses between Fortran/C
    interfaces. Fortran code is used whenever possible for arrays with
    column major order. In all other cases, C code is preferred.

    In BLAS, the naming convention is that all functions start with a
    type prefix, which depends on the type of the principal
    matrix. These can be one of {'s', 'd', 'c', 'z'} for the numpy
    types {float32, float64, complex64, complex128} respectively.
    The code and the dtype are stored in attributes `typecode` and `dtype`
    of the returned functions.
    """
    return _get_funcs(names, arrays, dtype,
                      "BLAS", _fblas, _cblas, "fblas", "cblas",
                      _blas_alias)
</pre></body></html>