
Note - Viewing PDF files within a web browser causes some links not to function (see MG595892).
Use HTML for full navigation.

FormalPro Reference Manual

Release 2018.1

May 2018

© 2004-2018 Mentor Graphics Corporation

All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

https://support.mentor.com/en/knowledge-base/MG595892

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in
the license agreement provided with the software, except for provisions which are contrary to applicable
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

End-User License Agreement: You can print a copy of the End-User License Agreement from:
mentor.com/eula.

Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210

Website: mentor.com

Support Center: support.mentor.com

Send Feedback on Documentation: support.mentor.com/doc_feedback_form

https://mentor.com/trademarks
https://mentor.com/
https://mentor.com/eula
https://support.mentor.com/
https://support.mentor.com/
https://support.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
Introduction . 13

Command Line Syntax Conventions . 13
Related Publications . 13

Chapter 2
Command Reference . 15

formalpro Command . 15
formalpro Command Options . 19

-31aCompat. 24
-87 | -93 | -2008. 24
-a, -b, -common. 25
-addRuleFile . 26
-alib, -alibF . 27
-archive . 28
-blackboxFile . 29
-bufifenable . 29
-cache . 31
-checkArrayOffsets . 31
-noCheckResources . 32
-commentSynthOffRegions . 33
-commentTransOffRegions . 33
-CommonCUnitScope. 34
-configFile. 34
-constraintFile . 35
-convertFloats . 36
-cycleCountLimit . 37
-cycleSolve . 38
-dataPath . 39
-dataPathModules . 40
-debug . 42
+define+definition[=value]. 43
designFile . 43
-dffWithEnable . 44
-diffOnQ . 45
-diffOnQOnly . 46
-dividerArchitecture . 47
-DWPipeTransparent . 48
-eco . 49
-ecoDir . 53
-edifFile. 54
-encapsulateAll . 55
FormalPro Reference Manual, 2018.1 3
May 2018

Table of Contents
-f . 56
-fastVerilogRead. 58
-fl. 59
-flow . 60
-formalEyes. 62
-fpga . 64
-FSMencoding . 65
-gate . 66
-gatedClocks . 67
-noGateOptimization . 68
-generics . 69
-gui . 69
-help . 70
-noheuristicNameLookup . 71
-ignoreNoPath . 72
-inferVHDLorder . 72
+incdir . 73
-libConfigFile . 74
-LibertyPGpins . 76
+libext . 76
+liborder . 77
+librescan . 78
+libVerbose. 78
-log . 79
-logLevel . 80
-masterSlaveMerge . 81
-matchFile . 82
-matchseq . 82
-memLimit . 84
-mergeReplicatedReg . 84
-mod . 85
-mp . 86
-mpLimit . 87
-mpTimeLimit. 88
-multiplierArchitecture . 89
+noLibCell . 90
-optimizeEqOpers . 91
-noOverWrite . 92
-parameters . 93
-PACheck . 94
-paConfigFile . 95
-paConfig<pa_type> . 96
-paLib<pa_type>. 98
-propagateDontCare . 99
-partialSumCheck . 100
-pruneMuxAheadOfLatch. 102
-QQbarMerge . 103
-QQbarSetResetMerge . 103
-queueLicense . 104
4
May 2018

FormalPro Reference Manual, 2018.1

Table of Contents
-redundantRegMerge . 105
-removeIgnoredOutputs . 106
-reportUnmatchedDiffs . 106
-reports . 108
-restart . 108
-resume . 110
-retime. 111
-rtl . 112
-rtlIgnoreNoPathBBIns . 112
-rtlIgnoreVHDLComponentError . 113
-rtlMemoryLimit . 114
-rtlSimWarnings . 115
-rtlTreatDeclAsassign . 115
RTL Naming Control . 116
-ruleFile. 118
-slib, -slibF . 118
-simplifyPipelineRegs. 119
-solveFedByUnmatched . 121
-solveOrder . 122
-solveTimeLimit . 123
-stopAfter . 124
-stopOnBlackBox . 124
-stopOnConfigError . 125
-stopOnConstraintError . 126
-stopOnCycles. 126
-stopOnDiff . 127
-stopOnMissing. 128
-stopOnUnmatched . 129
-strategy . 130
Suffix Control Switches (Design Files) . 131
Suffix Control Switches (Library Files) . 132
-suppress . 134
-sv . 135
-sv2005 . 136
-sv2009 . 137
-svFile . 138
-sv2005File . 138
-sv2009File . 139
-synopsysStrictArrayAddress . 140
-tlist . 141
-treatDivisionAsShift . 141
-upf . 142
-useAliasPhases . 143
-v . 144
-verifyTristate . 145
-verilogFile . 146
-version . 147
-vcsCompat . 147
-vhdl2008File . 151
FormalPro Reference Manual, 2018.1 5
May 2018

Table of Contents
-vhdlFile . 151
-vlibF. 152
-vlog95 | -vlog01. 153
-vmapfile . 154
-work . 155
-y . 156
-ylibF. 157

Chapter 3
FPGA Tools . 159

formalpro_fpga . 160
transFVI . 161
transVIF . 163

Chapter 4
Debugger Commands . 165

fpdebug Command. 166
Debugger Shell Commands . 170

addtarget . 172
analyze . 174
btc . 176
checkequiv . 178
drives. 180
eqnetreport . 182
extracteco . 183
extracttarget . 185
help . 186
networklearn . 187
nodeinfo . 188
pairgates . 190
pinpointreport . 191
quit . 192
savenetwork . 193
showschematic . 194
statistics. 196
syntax . 197
tdvr . 198
whatif . 199

Chapter 5
Input File Syntax. 205

Constraint and Match File Scripts . 206
VHDL Read Order File. 206
Options Applied Based on Platform . 207

Rule Files . 207
Match Files . 210
Black Box Files . 216

blackbox, encapsulate, and noencapsulate . 216
6
May 2018

FormalPro Reference Manual, 2018.1

Table of Contents
dpAddGroup . 219
Constraint Files . 220

assert . 220
complement. 221
duplicate and duplicate_compl . 223
eco_correspond . 227
force . 227
ignore . 231
no_match. 233
transparent. 234
tie and tie_compl. 234
multiplierarchitecture . 237
make_pi and make_po . 239
Don’t Care. 240

Configuration Files . 247
encode . 247
partial_sum_checker . 249
port_direction . 250

Appendix A
FormalPro Library Compiler . 253

Comparing Libraries . 253
Precompiling Libraries . 255

fplibcomp . 256
Simple Verilog Format . 264

Appendix B
Using EDIF Design Files. 267

Specifying Nets and Ports as Power or Ground . 267
Specifying Design File Suffixes . 268
Compiled EDIF Designs . 268
Special Processing Rules . 269

Appendix C
FormalPro Utilities . 271

fp_utility. 271

Appendix D
Supported VHDL2008 Constructs . 273

Conditional and Selected Sequential Assignments . 274
Simplified Case Expression Support . 274
Unconstrained Element Support . 275
Context Declarations . 275
Extensions to Generate . 276
Standard Packages . 277

Updates in Standard Package . 277
Updates in Std_logic_1164 Package. 278
Updates in Numeric packages. 278
FormalPro Reference Manual, 2018.1 7
May 2018

Table of Contents
Fixed Point Package. 279
Float Point Package . 279
Expressions Port Map . 280
Read Out Ports . 281
Simplified Sensitivity List . 281
Block Comments . 282
Matching Case Statement . 282
Array-Scalar Operators . 283
Logical Reduction Operators . 283
Matching Relational Operators . 283
Conditional Operator Support . 284
Maximum and Minimum Function Support . 284
Unconstrained Record Elements . 284
Type Generics . 285
Generic List . 286
Bit String Literal . 287
Resolved Element Support. 289

Appendix E
readVSDC Flow File . 297

Using the readVSDC Flow . 297

Index

End-User License Agreement
8
May 2018

FormalPro Reference Manual, 2018.1

List of Figures

Figure 2-1. ECO Region Schematic Coloring . 51
Figure 2-2. Effects of -reportUnmatchedDiffs. 107
Figure 2-3. Inverters added to change timing . 121
Figure 2-4. Two Modes of bufif Modeling . 146
Figure 5-1. Register Asymmetry Introduced by Synthesis . 223
Figure 5-2. Targets Produced by Duplicate Matching. 224
Figure 5-3. Format of an entry in the Multarch report. 237
Figure 5-4. Example: Cycle Breaking . 240
Figure 5-5. Advanced Constraint Example . 245
Figure 5-6. Assertion Failure in the Detailed Comparison Report. 248
FormalPro Reference Manual, 2018.1 9
May 2018

List of Figures
10
May 2018

FormalPro Reference Manual, 2018.1

List of Tables

Table 3-1. FPGA Tools and Licenses . 159
Table 4-1. Debugger Command Summary . 170
Table D-1. Read Out Ports . 281
Table D-2. Simplified Sensitivity List . 281
Table D-3. Block Comments . 282
Table D-4. Logical Reduction Operators . 283
Table D-5. Matching Relational Operators . 284
Table D-6. Conditional Operator Support . 284
FormalPro Reference Manual, 2018.1 11
May 2018

List of Tables
12
May 2018

FormalPro Reference Manual, 2018.1

FormalPro Reference Manual, 2018.1 13
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 1
Introduction

FormalPro is a formal verification tool that checks the functional equivalence of two designs.
FormalPro operates on the designs using optional user-defined input files, which prepare the
designs for matching ports and registers, identifying targets between the two designs, and
solving the targets to verify the functional equivalence.

Command Line Syntax Conventions . 13

Related Publications . 13

Command Line Syntax Conventions
This document uses notational elements to describe command line syntax.

Related Publications
Several types of documents make up the FormalPro document set.

• FormalPro User’s Manual — provides process, concept, and procedure information for
FormalPro.

• FormalPro Release Notes — provides release information that reflects changes to
FormalPro for the software version release.

Bold A bold font indicates a required argument.

[] Square brackets enclose optional arguments (in
command line syntax only). Do not enter the brackets.

Italic An italic font indicates a user-supplied argument.

underlined An underlined item indicates either the default argument
or the default value of an argument.

… An ellipsis follows an argument that may appear more
than once. Do not include the ellipsis in commands.

{ } Braces enclose arguments to show grouping. Do not
enter the braces.

| The vertical bar indicates an either/or choice between
items. Do not include the bar in the command.

FormalPro Reference Manual, 2018.114

Introduction
Related Publications

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Getting Started with FormalPro — offers a tutorial that allows you to use some of the
most important aspects of and uses for FormalPro.

FormalPro Reference Manual, 2018.1 15
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 2
Command Reference

The formalpro command is a Linux shell command that invokes FormalPro. You can use it in a
shell script or a do file to setup and automate the equivalence checking analysis, or you can use
it to invoke the GUI to setup and run the analysis.

For more information on using the GUI and creating shell scripts, see the FormalPro User’s
Manual.

formalpro Command. 15

formalpro Command Options . 19

formalpro Command
Invokes the FormalPro equivalence checker.

Usage

formalpro [globalOptions]
{-a library_specification module_specification design_scope}
{-b library_specification module_specification design_scope}
[-common library_specification module_specification]

formalpro -gui [globalOptions]

formalpro {-archive | -reports | -verilogFile}

formalpro -help [blackbox | match | constraints | rules]

Arguments

• library_specification
[-v libraryFile] [-y libraryDirectory] [-vlibF | -ylibF dirList]
[-alib libFile | -alibF libList] [-slib libFile | -slibF libList] [-[no]LibertyPGpins]

• module_specification
[-mod moduleName]

• design_scope

Design Specification Switches:
{designFile … | -fl designFileList} [-gate | -rtl]

FormalPro Reference Manual, 2018.116

Command Reference
formalpro Command

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Library Resolution Switches:
[+liborder | +librescan] [+libext+extension[+extension…]] [+libVerbose] [+noLibCell]

File Language-Specific Switches:
[-87 | -93 | -2008] [-vhdlFile filename] [-vhdl2008File filename] [-sv filename...]
[-svFile filename] [-sv2005 filename] [-sv2005File filename] [-sv2009 filename...]
[-sv2009File filename] [-verilogFile filename] [-vlog95] [-vlog01]
[-edifFile filename] [-31aCompat] [-CommonCUnitScope] [-vcsCompat]

Library Mapping Switches:
[-work libraryName { [fileType] filePathname... | -fl designFileList}]
[-vmapfile filename] [-noGateOptimization name=value]

Compiler Switches:
[-inferVHDLorder] [-synopsysStrictArrayAddress] [-partialSumCheck]
[-dffWithEnable] [+noLibCell] [-paLib<pa_type>] [-pruneMuxAheadOfLatch]
[-optimizeEqOpers] [-rtlTreatDeclAsassign] [-fastVerilogRead]

Power Aware Switches:
[-PACheck] [-paConfigFile] [-paLib<pa_type>] [-paConfig<pa_type>] [-upf]

Verilog-specific Switches:
[+incdir+include_dir …] [+define+definition[=value]…] [-parameters name=value]

Control Switches:
[-propagateDontCare {all | none}] [-rtlMemoryLimit [integer]] [-treatDivisionAsShift]
[RTL Naming Control] [-FSMencoding scheme] [-encapsulateAll] [-verifyTristate]
[-commentSynthOffRegions] [-commentTransOffRegions]

Formal Eyes Switches:
[-formalEyesAll] [-formalEyesFloat] [-formalEyesMulti] [-formalEyesX]
[-formalEyesConstRegs]

• globalOptions

Interface Control:
[-noOverWrite] [-f command_file] [-flow {filename | predefinedFlow}]
[-cache [cacheDir]] [-memLimit number] [-debug] [-cycleCountLimit integer]
[{-suffixVerilog | -suffixVHDL | -suffixSystemVerilog} extensionList]
[{-suffixVlogLib | -suffixDftLib | -suffixEDIF | -suffixSynLib} extensionList]
[-eco [generate | final]]

Environment Settings:
{[-mp integer] [-mpLimit integer] [-mpTimeLimit integer]} [-queueLicense]
[-noCheckResources]

Input-file Specification:
[-blackboxFile filename] [-matchFile filenames] [-ruleFile filename]
[-addRuleFile filename] [-constraintFile filenames] [-configFile filename]
[-paConfigFile filename]

Command Reference
formalpro Command

FormalPro Reference Manual, 2018.1 17
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Flow Control:
[-stopAfter{compile | match}] [-stopOnBlackBox] [-stopOnMissing]
[-stopOnUnmatched] [-stopOnDiff integer] [-stopOnConfigError]
[-stopOnConstraintError] [-stopOnCycles] [-resume]
[-restart {a | b | match | constraint | solve | coverage}]

Log-file Control:
[-log logFileName] [-logLevel {mini | compact | full}] [-suppress]
[-reportUnmatchedDiffs]

Match-stage Control:
[-convertFloats {floating | 0 | 1 | input | X}] [-bufifenable] [-checkArrayOffsets]
[-diffOnQ] [-diffOnQOnly] [-gatedClocks] [-noheuristicNameLookup]
[-ignoreNoPath] [-matchseq engine[:engine]…] [-mergeReplicatedReg]
[-PACheck {none | all | isolation | level_shifter | retention}] [-removeIgnoredOutputs]
[-simplifyPipelineRegs] [-useAliasPhases] [-rtlIgnoreNoPathBBIns]

Solve-stage Control:
[-solveFedByUnmatched] [-strategy engine_level] [-cycleSolve]
[-solveTimeLimit] [-solveOrder factory_supplied_controlFile] [-retime]
[-dataPath] [-dataPathModules mapList]

Operator Control:
[-multiplierArchitecture architecture[_adderType][_swap]]
[-dividerArchitecture architecture] [-log]

Library Modeling:
[-QQbarMerge] [-QQbarSetResetMerge] [-masterSlaveMerge]
[-redundantRegMerge] [-libConfigFile configFileName]

FPGA Control:
[{-fvi file.fvi | -wsp file.wsp}]

-fpga {altera | actel | xilinx}

Note: the -fpga option is only required when you run FormalPro using the command
invocation formalpro_fpga.

Description

FormalPro verifies the functional equivalence of two designs, either gate-level netlists or
Register-transfer level (RTL) design files. FormalPro produces various reports and comparison
data you can use to determine the source of any differences found between the designs.

You can invoke FormalPro from the command line, or through the Graphical User Interface
(GUI), which you invoke by using the -gui switch.

Specify the design files to be verified within the design scope (identified by the -a and -b
switches). It is a common practice to specify design A as your reference design and design B as

FormalPro Reference Manual, 2018.118

Command Reference
formalpro Command

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

your altered design. The design scope is also where you specify any design specific switches.
Specify common library files for both designs in the -common design scope.

The globalOptions group of arguments controls the interface and process flow of the run. You
should specify the global options before the -a design scope.

As FormalPro runs, it creates a cache that stores information generated at each stage of the run.
This cache is normally stored in the current directory as formalpro.cache/.

After the run has completed, you should analyze the results, as shown in the log file, to verify
that every stage of the flow completed as you expected. If so, and FormalPro reports there are
differences, use the FormalPro debugger to pinpoint the differences. For information on the
debugger, refer to the chapter, “Debugging Design Differences” in the FormalPro User’s
Manual or see “Debugger Commands” in this manual.

Examples

The following example verifies two Verilog designs, lpfir.v and lpfir_scan.v, containing
technology cells from the same library, ../lib/js2bp.v:

formalpro -a lpfir.v \
-b lpfir_scan.v \
-common -v ../lib/js2bp.v

The following example compares the top-level module of the Verilog files in the directory
preTweak/ with the module DUM in postTweak.v using the ATPG library asic_lib.lib for both
designs. The comparison stops if any black box, unmatched item, or difference is encountered:

formalpro -stopOnBB -stopOnUnmatched -stopOnDiff 1\
-a preTweak/*.v \
-b postTweak.v -mod DUM \
-common -alib asic_lib.lib \

The following example compares original.v in the vendor1 Verilog library directory and
retarget.v in the vendor2.v library, with an additional matching file called matches.cmd.

formalpro -matchFile matches.cmd \
-a original.v -y vendor1/ \
-b retarget.v -v vendor2.v

Command Reference
formalpro Command Options

FormalPro Reference Manual, 2018.1 19
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

formalpro Command Options
The formalpro command provides switch options to support a variety of operations.

-31aCompat . 24

-87 | -93 | -2008 . 24

-a, -b, -common. 25

-addRuleFile . 26

-alib, -alibF . 27

-archive . 28

-blackboxFile . 29

-bufifenable. 29

-cache. 31

-checkArrayOffsets . 31

-noCheckResources . 32

-commentSynthOffRegions . 33

-commentTransOffRegions. 33

-CommonCUnitScope . 34

-configFile . 34

-constraintFile . 35

-convertFloats. 36

-cycleCountLimit . 37

-cycleSolve. 38

-dataPath. 39

-dataPathModules . 40

-debug . 42

+define+definition[=value] . 43

designFile . 43

-dffWithEnable. 44

-diffOnQ . 45

-diffOnQOnly . 46

-dividerArchitecture . 47

-DWPipeTransparent . 48

-eco. 49

-ecoDir. 53

-edifFile . 54

FormalPro Reference Manual, 2018.120

Command Reference
formalpro Command Options

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-encapsulateAll . 55

-f. 56

-fastVerilogRead . 58

-fl . 59

-flow. 60

-formalEyes. 62

-fpga. 64

-FSMencoding . 65

-gate . 66

-gatedClocks . 67

-noGateOptimization . 68

-generics . 69

-gui. 69

-help. 70

-noheuristicNameLookup . 71

-ignoreNoPath . 72

-inferVHDLorder. 72

+incdir . 73

-libConfigFile . 74

-LibertyPGpins. 76

+libext . 76

+liborder . 77

+librescan . 78

+libVerbose. 78

-log . 79

-logLevel . 80

-masterSlaveMerge . 81

-matchFile . 82

-matchseq . 82

-memLimit . 84

-mergeReplicatedReg. 84

-mod. 85

-mp. 86

-mpLimit . 87

-mpTimeLimit . 88

Command Reference
formalpro Command Options

FormalPro Reference Manual, 2018.1 21
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-multiplierArchitecture . 89

+noLibCell . 90

-optimizeEqOpers . 91

-noOverWrite . 92

-parameters. 93

-PACheck . 94

-paConfigFile . 95

-paConfig<pa_type> . 96

-paLib<pa_type> . 98

-propagateDontCare . 99

-partialSumCheck . 100

-pruneMuxAheadOfLatch . 102

-QQbarMerge. 103

-QQbarSetResetMerge . 103

-queueLicense . 104

-redundantRegMerge . 105

-removeIgnoredOutputs . 106

-reportUnmatchedDiffs . 106

-reports . 108

-restart. 108

-resume . 110

-retime . 111

-rtl . 112

-rtlIgnoreNoPathBBIns . 112

-rtlIgnoreVHDLComponentError . 113

-rtlMemoryLimit . 114

-rtlSimWarnings . 115

-rtlTreatDeclAsassign . 115

RTL Naming Control . 116

-ruleFile. 118

-slib, -slibF . 118

-simplifyPipelineRegs . 119

-solveFedByUnmatched. 121

-solveOrder . 122

-solveTimeLimit . 123

FormalPro Reference Manual, 2018.122

Command Reference
formalpro Command Options

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-stopAfter . 124

-stopOnBlackBox . 124

-stopOnConfigError . 125

-stopOnConstraintError . 126

-stopOnCycles. 126

-stopOnDiff . 127

-stopOnMissing . 128

-stopOnUnmatched . 129

-strategy . 130

Suffix Control Switches (Design Files). 131

Suffix Control Switches (Library Files). 132

-suppress . 134

-sv. 135

-sv2005. 136

-sv2009. 137

-svFile . 138

-sv2005File . 138

-sv2009File . 139

-synopsysStrictArrayAddress . 140

-tlist . 141

-treatDivisionAsShift . 141

-upf . 142

-useAliasPhases . 143

-v . 144

-verifyTristate. 145

-verilogFile . 146

-version . 147

-vcsCompat . 147

-vhdl2008File . 151

-vhdlFile . 151

-vlibF . 152

-vlog95 | -vlog01 . 153

-vmapfile . 154

-work . 155

-y . 156

Command Reference
formalpro Command Options

FormalPro Reference Manual, 2018.1 23
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-ylibF . 157

FormalPro Reference Manual, 2018.124

Command Reference
-31aCompat

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-31aCompat
Scope: Design-specific

Alias: none

Reduces compilation errors generated by older SystemVerilog files.

Usage

• -31aCompat — Reduces errors generated by legacy SystemVerilog files when compiled
by the RTL compiler.

Description

Legacy SystemVerilog files that conform to the LRM version 3.1A may not be compliant with
later versions of SystemVerilog. This option eases the restrictions imposed by the RTL
compiler in this case.

GUI Access

Examples

formalpro -a test.sv mydff.v -31acompat -b netlist.v

-87 | -93 | -2008
Scope: Design-specific

Alias: None

Specifies the version of subsequent VHDL design files.

Usage

• -87 — VHDL87

• -93 — VHDL93 (default)

• -2008 — VHDL2008

Location: Options dialog box —

A specific pane > RTL tab

B specific pane > RTL tab

Action: Enable: select Version 3.1A compatibility

Disable: deselect Version 3.1A compatibility

Command Reference
-a, -b, -common

FormalPro Reference Manual, 2018.1 25
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

This switch must precede design files to which it applies. Switches apply to all subsequent
VHDL design files within the design a scope unless another switch is specified. These switches
can be used on a file-by-file basis.

By default (when FormalPro is first installed), all files with the extension vhd, .VHD, .hdl,
.HDL, .vhdl, and .VHDL are compiled as VHDL files based on the settings in formalpro.ini.
This behavior can be changed by changing the formalpro.ini settings or using one of the suffix
control switches.

GUI Access

Examples

In the following example design A consists of 3 design files, where two are in VHDL87 format
and one is in VHDL93 format. For design B, the default behavior is to read the design file as
VHDL93 format.

formalpro -a -87 design_1a.vhd design_1b.vhd \
-93 design_1c.vhd \

 -b design_2.vhd

Related Topics

Suffix Control Switches (Library Files)

Suffix Control Switches (Design Files)

-vhdl2008File

-vhdlFile

-a, -b, -common
Scope: Design-specific

Alias: None

Specifies the beginning of a design scope.

Location: Project tab > A tab

Project tab > B tab

Action: Select 87, 93, or 2008 from the dropdown menu to the left of the specific
design file.

FormalPro Reference Manual, 2018.126

Command Reference
-addRuleFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -a — Specifies the beginning of design A, typically the reference design.

• -b — Specifies the beginning of design B, typically the modified design.

• -common — Specifies the beginning of the common design scope, where you specify
the top-level module for and/or libraries that apply to both designs A and B.

Description

The design scope of the FormalPro command line is where you specify any switches that are
specific to either the A or B design. The reference table in the upper right-hand corner of each
switch’s reference page shows whether a switch is design-specific or not.

GUI Access

Examples

formalpro -a reference_design.v \
 -b modified_design.v \
 -common -v shared_libraries.v

-addRuleFile
Scope: Global

Alias: None

Specifies the location of an additional rule file containing implicit match rules.

Usage

• -addRuleFile filename

filename — Specifies the location of a rule file. Non-literal pathnames are relative to the current
directory.

Description

FormalPro automatically loads a default rule file that contains several pre-created rules that aid
in matching the comparison points between your designs. You can use this option to specify an
additional rules file (or from the file specified by the -ruleFile command option).

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Command Reference
-alib, -alibF

FormalPro Reference Manual, 2018.1 27
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Before using this option you should have a full understanding of the operation and
interaction of the default rule file, rule sets, the -ruleFile option and the -addRule file option.

For this information, see the section titled “Rule Files” on page 207.

GUI Access

Examples

formalpro -addrulefile ./setup/my_rule.cmd \
 -a design_a.v \
 -b design_b.v

-alib, -alibF
Scope: Design-specific

Alias: None

Specifies Mentor Graphics ATPG library files to use for design compilation.

Usage

• -alib libFile —Specifies an ATPG technology library. One libFile argument per switch.

• -alibF libList — Specifies a file containing a list of ATPG technology library files. One
libList argument per switch.

Description

Use these options for specifying a library file or a list of library files for design compilation.

You can specify -alib and -alibF multiple times on the command line.

The format of libList is shown in the following example:

commented line
./lib/atpg_library_1.lib # a single ATPG library file
./lib/atpg_lib_*.lib # wildcards are allowed

Location: Project tab > General tab > Match rules entry box

Action: Type the path to your rule file or use:

FormalPro Reference Manual, 2018.128

Command Reference
-archive

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -a designA.v -b designB.v \
 -common -alib ./atpg_lib_1.atpglib

-archive
Scope: Stand-alone

Alias: None

Archives a FormalPro cache.

Usage

• -archive — Saves the cache containing results of a previous run. By default, subsequent
runs overwrite the existing cache.

Description

The cache is renamed to formalpro.cache_archive_<n>, where n incrementally increases
beginning at 1, and retains the subdirectories debug, logs, inputFiles, outputFiles, and reports.
The -restart switch cannot be used on the archived data.

GUI Access

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: Specifying a library file:

1. Type the path to your library or use:

2. Select alib from the dropdown menu to the left of the library.

Specifying a list of library files:

1. Type the path to your file list or use:

2. Select alibF from the dropdown menu to the left of the file.

Location: File > Archive cache

Command Reference
-blackboxFile

FormalPro Reference Manual, 2018.1 29
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following command:

formalpro -archive

creates an archive of the current formalpro.cache as the following directory:

formalpro.cache_archive_1

-blackboxFile
Scope: Global

Alias: -bbfile

Specifies the location of a black box file containing user-created black box definitions.

Usage

• -blackboxFile filename

filename — Specifies the location of the black box file. Non-literal pathnames are relative to the
current directory.

• -noblackboxFile filename

filename — Specifies a black box file to ignore when restarting a previous run.

For more information about black box files, see “blackbox, encapsulate, and noencapsulate” on
page 216.

GUI Access

Examples

formalpro -blackboxfile ./setup/bb.cmd \
 -a design_a.v \
 -b design_b.v

-bufifenable
Scope: Global

Alias: None

Location: Project tab > General tab > Black box entry box

Action: Type the path to your black box file or use:

FormalPro Reference Manual, 2018.130

Command Reference
-bufifenable

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Enables comparison points on tri-state devices.

Note
This option has been deprecated. Use -verifyTristate.

Usage

• -bufifenable — Adds a comparison point to enable lines on tri-state devices if the
tri-state bus feeds either a primary output port or the input to a blackbox.

• -nobufifenable — Disables this functionality (default).

Description

In order to address a design scenario in which one design is driving a Z value on a bus when the
other design is driving a 0, FormalPro provides a comparison point for the enable lines on tri-
state devices. Tri-state devices are those that are described by the Verilog primitives bufif0,
bufif1, notif0, and notif1. If a tri-state bus is driven by several tri-state devices, the enable lines
are logically ORed together. The output of the OR is matched to a corresponding OR in the
other design and treated as a primary output. This enable signal will have the same name as the
tri-state bus with the string “_MGC__BUFIF_ENABLES” appended.

Since the enable-signal name is processed using the normal name matching methods, it may be
necessary to manually match this comparison point if the names of the two designs are
significantly different.

This comparison point is only added if the tri-state bus feeds either a primary output port or the
input to a blackbox. This limitation results from the likelihood that the interior logic of two
designs will be different and that there won’t be a reasonable match between the A and B sides.
Primary outputs and blackbox inputs are much more likely to have a correspondence between
the two designs.

GUI Access

Examples

formalpro -bufifenable

Location: Options > General > Solve

Action: Enable: (default) Select Solve Bufif Enable

Disable: Unselect Solve Bufif Enable

Command Reference
-cache

FormalPro Reference Manual, 2018.1 31
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-cache
Scope: Design-specific

Alias: None

Writes the FormalPro cache to a user-specified location.

Usage

• -cache cacheDir

cacheDir — Specifies a directory in which to write the FormalPro cache.

Description

FormalPro creates the new cache directory if none exists. If a cache already exists at the
specified location, it is overwritten and the run proceeds.

The default location for the FormalPro cache is ./formalpro.cache.

GUI Access

Examples

formalpro -cache ./new_formalpro.cache \
 -a design_a.v \
 -b design_b.v

-checkArrayOffsets
Scope: Global

Alias: None

Enables the name-matching algorithm to use offset to account for port and register arrays that
do not begin with the least significant bit (LSB) set to 0.

Usage

• -checkArrayOffsets — Enables this functionality.

• -nocheckArrayOffsets — Disables this functionality (default).

Location: Project tab > General tab > Cache directory

Action: Type the path of the new FormalPro cache or use:

FormalPro Reference Manual, 2018.132

Command Reference
-noCheckResources

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

-checkArrayOffsets checks for port and register arrays that do not begin with the least
significant bit (LSB) set to 0 and adjusts the name-matching algorithm to account for this offset.

By default, name matching is based on strict name-matching strings, which has the potential to
generate mismatched comparison points.

For example, given the following register declaration in Verilog for design A:

reg [0:5] regArray ;

and the register declaration in Verilog for design B:

reg [1:6] regArray;

By default, name matching uses strict matching rules that leave registers regArray[0] from
design A and regArray[6] from design B unmatched, while incorrectly matching
regArray[1:5]. With the -checkArrayOffsets option, FormalPro, examines the array offsets
and use name matching to match design A, regArray[0] to design B, regArray[1] and so on.

GUI Access

Examples

formalpro -checkArrayOffsets \

-noCheckResources
Scope: Global option

Alias: None

Disables available memory checking prior to verification.

Usage

• -checkResources — Checks available system memory and outputs a warning message if
there is less than 10 GB of disk space or 2 GB of physical RAM (default).

• -noCheckResources — Disables memory check.

Location: Options > General > Match

Action: Enable: (default) Select checkArrayOffsets

Disable: Unselect checkArrayOffsets

Command Reference
-commentSynthOffRegions

FormalPro Reference Manual, 2018.1 33
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

The default behavior can also be changed in the FORMALPRO_HOME/lib/formalpro.ini file or
the .wsp file by setting the checkResources option to false.

Examples

The following command disables the memory check by setting the checkresources variable in
the .wsp file to false:

formalpro -wsp file.wsp -noCheckResouces

A warning message similar to the following displays if the available disk space is below10 GB:

Warning: Low disk space for formalpro.cache 9876K blocks

A warning message similar to the following displays if the available RAM is below 2 GB:

Warning: Low physical RAM available 1900K blocks

-commentSynthOffRegions
Scope: Design-specific

Alias: None

Treats the region between pragmas synthesis_off and synthesis_on as comments.

Usage

• -commentSynthOffRegions — Enables this functionality.

• -nocommentSynthOffRegions — Disables this functionality (default).

Description

This command instructs FormalPro to treat the region between the pragmas synthesis_off and
synthesis_on as comments. This is not default synthesizer behavior.

-commentTransOffRegions
Scope: Design-specific

Alias: None

Treats the region between synthesis_off and synthesis_on pragmas as comments.

FormalPro Reference Manual, 2018.134

Command Reference
-CommonCUnitScope

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -commentTransOffRegions —Treats the region between the pragmas translate_off and
translate_on as comments. This is not default synthesizer behavior.

• -nocommentTransOffRegions — disables this functionality (default).

-CommonCUnitScope
Scope: Design-specific

Alias: none

Compiles design scope files as common unit.

Usage

• -CommonCUnitScope — Specifies that all the files in the design scope (-a or -b) should
be compiled as a common compilation unit.

GUI Access

Examples

In this example, the file1.v, file2.sv and mydiff.v will be compiled in one compilation unit
instead of three individual compilation scopes.

formalpro \
-a -commoncunitscope file1.v file2.sv mydff.v\
-b netlist.v

-configFile
Scope: Global

Alias: None

Specifies the location of configuration files containing user-created constraint statements that
are used in the FPGA flows.

Location: Options dialog box —

A specific pane > RTL tab

B specific pane > RTL tab

Action: Enable: select Common compilation unit scope

Disable: deselect Common compilation unit scope

Command Reference
-constraintFile

FormalPro Reference Manual, 2018.1 35
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -configFile filename — Specifies the location of the configuration file. Non-literal
pathnames are relative to the current directory.

• -noconfigFile — Instructs FormalPro to ignore a specified configuration file when
restarting a previous run.

For more information, see “Constraint Files” on page 220.

GUI Access

Examples

formalpro -configfile ./setup/config.cmd \
 -a design_a.v \
 -b design_b.v

-constraintFile
Scope: Global

Alias: None

Specifies the location of a constraint file containing constraint statements.

Usage

• -constraintFile filename

filename — Specifies the location of the constraint file. Non-literal pathnames are relative to the
current directory.

• -noconstraintFile — Instructs FormalPro to ignore a specified constraint file when
restarting a previous run.

For more information, see “Constraint Files” on page 220.

GUI Access

Location: Project tab > General tab > Config file entry box

Action: Type the path to your configuration file or use:

Location: Project tab > General tab > Constraints entry box

Action: Type the path to your constraint file or use:

FormalPro Reference Manual, 2018.136

Command Reference
-convertFloats

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -constraintfile ./setup/formalpro.constraint \
 -a design_a.v \
 -b design_b.v

-convertFloats
Scope: Global

Alias: None

Converts floating nets to a logical value or treats them as a primary input.

Usage

• -convertFloats [floating | 0 | 1 | input | X]

o 0 — Sets floating nets to the value “0”.

o 1 — Sets floating nets to the value “1”.

o input — Treats floating nets as primary inputs.

o floating — Treats nets as floating, overriding a previous setting (default). See
example.

o X — Specifies don’t care.

Description

FormalPro applies this switch during the match stage when it is propagating all constants.

FormalPro, by default, does not alter a floating net in your design. It reports all floating nets in
the formalpro.cache/reports/floating.report file. You can access the floating nets report from the
Reports menu.

Any net in your design without a driver is considered a floating net, and will not be solved. You
could use the “0” or “1” arguments to force floating nets to known values, which is useful in the
case of verifying an incomplete design. For more information, see Floating Nets in the
FormalPro User’s Manual.

GUI Access

Location: Options dialog box —

General pane > Match tab > Floating nets dropdown box.

Action: Select argument.

Command Reference
-cycleCountLimit

FormalPro Reference Manual, 2018.1 37
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

In this example, all floating nets are converted to primary inputs.

formalpro -convertfloats input \
 -a design_a.v -b design_b.v

In an FPGA flow (see Verifying FPGA Designs in the FormalPro User’s Guide), a
design_name.flow file is generated that sets floating nets to “0” (-convertFloats 0). If you want
floating nets to be treating as floating, invoke the .wsp file as follows:

design_name.wsp -convertFloats floating

-cycleCountLimit
Scope: Global

Alias: None

Controls the number of combinational cycles are reported in the cycles.report file.

Usage

• -cycleCountLimit integer

integer — Specifies the maximum number of combinational cycles reported in the cycles.report
file. Default is 100.

Description

FormalPro reports all combinational cycles, including all paths to an output from the cycle, to
the formalpro.cache/reports/cycles.report file.

From the GUI, you can access the combinational cycles report from the Reports menu.

GUI Access

Examples

The following example changes the maximum number of cycles that FormalPro reports.

formalpro -cyclecountlimit 10 \
 -a design_a.v \
 -b design_b.v

Location: Options dialog box —

General pane > Solve tab > Cycle count limit entry box

Action: Enter the maximum number of cycles that should be reported.

FormalPro Reference Manual, 2018.138

Command Reference
-cycleSolve

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-cycleSolve
Global

Alias: None

Disables the solve strategy that proves the equivalence of targets fed by combinational feedback
network topologies (cycles).

Usage

• -cycleSolve — enables this functionality (default).

• -nocycleSolve — disables this functionality.

Description

This functionality may increase the runtime for very large designs that contain a lot of
combinational cycles. Specify -nocycleSolve to analyze any cycles in your design after the
verification run completes.

Number of Equivalent comparison points: 232

Solved combinational Cycle 20

The tool reports the number of targets solved using this strategy in the Comparison Summary
section of the FormalPro log file as follows:

You can access a report on combinational cycles from the Reports > Removed >
Combinational Cycles.

In some cases, FormalPro may not be able to solve a target fed by a combinational cycle. In this
case, it is removed from the verification and reported in the log file as Removed: fed by a
combinational cycle. For more information, see Combinational Feedback Loops in the
FormalPro User’s Manual.

GUI Access

Examples

formalpro -nocyclesolve \
 -a design_a.v \
 -b design_b.v

Location: Options dialog box —

General pane > Solve tab

Action: Enable: Select Solve targets with combinational cycles

Disable: Unselect Solve targets with combinational cycles

Command Reference
-dataPath

FormalPro Reference Manual, 2018.1 39
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-dataPath
Global

Alias: None

Enables the FormalPro datapath solver.

Usage

• -dataPath — Enables the function.

• -noDataPath — Disables the function. (default)

Description

Activates additional match and solve processes to identify arithmetic operators in the system
and compare RTL-to-gates with advanced methods. This option can enhance runtime
performance considerably when it is applicable. This option does not apply to gate-to-gate
compares. When the -dataPath option is active, additional compare points are created at the
datapath-related module boundaries. The compare points are of the User defined output (Uout)
type in the main FormalPro logs. The Uout is named as an instance and appears as a “+” symbol
on the design schematics. A datapath_objects.report report file is generated in the cache/reports
directory with the instance names of the boundary compare items. If a certain data path
collection of operators is not automatically found and processed, you can aid the process in two
ways:

1. Provide a user match file that pairs items from the datapath_objects.report to each other.
The syntax for a manual match of datapath objects is as follows:

match register \A.instance \B.instance

2. Provide a manual datapath grouping command in a black box file. See the dpAddGroup
command.

When datapaths are identified and matched from A to B, the solve.log in cache/logs will
indicate the successful compares related to datapaths. In the following log, two new engines are
indicated as DFG and ISODP. The points removed by ISODP are likely to be the boundary
points of unused datapaths. These points were potential compares but were not necessarily
needed and are benign when unused. If user matches enhanced the number of fully matched
datapaths, this number would reduce. When a datapath is rejected by the solver, the Uout points
that ringed that module are made transparent and the logic cone at the designation register sees
the full path between classic compare points.

FormalPro Reference Manual, 2018.140

Command Reference
-dataPathModules

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

BEGIN: solve [11/8/2017 21:09:31]
Solve
===
Engine Targets Equiv. Diff. Unsolv. Removed/ Elapsed %
 run fed targets targets targets Deferred hh:mm:ss Compl.

ISO 18294 4956 0 13338 0 0:00:22 27.09
DWC 13338 4527 0 8811 0 0:02:23 51.84
DFG 8811 253 0 8558 0 0:00:08 53.22
ISODP 8558 1 0 7776 781 0:00:05 57.49
DWC 7776 90 0 7686 0 0:00:50 57.99
OMEGA 7686 0 0 4669 3017 0:00:36 74.48
RSYN 4669 3 0 4666 0 0:00:33 74.49
CPP_1 4666 3731 0 935 0 0:21:36 94.89
ERGO 935 95 0 840 0 0:10:57 95.41
ISO 840 0 0 840 0 0:00:03 95.41
RSYN 840 0 0 840 0 0:02:20 95.41
Solve Time Limit Expired.
BenignDP -781 0 0 0 -781 00:00:00
Deferred 2992 0 +25 -3017 00:00:00 95.06

Totals 17513 16648 0 865 0 0:39:53 95.06
END: solve [11/8/2017 21:49:33] Result: OK

GUI Access

Examples

Add the option -datapath to the command line

formalpro -a –rtl rtl.f –b -gate gates.f –common –slibf libs.f -datapath

Related Topics

-dataPathModules

dpAddGroup

-dataPathModules
Global

Alias: None

Specifies the prefix for the names of datapath objects in the current design.

Location: Options dialog box —

General pane > Solve tab

Action: Check the box to enable the datapath solver

Command Reference
-dataPathModules

FormalPro Reference Manual, 2018.1 41
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -dataPathModules mapList — Specifies a map to name datapath objects. The mapList
consists of space delimited pairs of prefix and type in this format:

<module_name:module_type ...>

Description

This command line or formalpro.ini file option can override defaults to specify names of
datapath objects in the current design.

The format of the command is the module name paired with a known FormalPro type. Each
module_name is considered a naming prefix that must match and can be followed by any string.

The following is a list of the known types of datapath objects:

• mult_sign

• mult_uns

• adder

• incr

• decr

• minus (apply 2’s complement)

• subtract

• datapath

Normally, you do not need to modify this option. Most of the module names are RTLC compiler
operators.

GUI Access

None

Examples

The default for this option is shown as an entry in the formalpro.ini file:

dataPathModules = "M_RTLSIM_MULT_SIGN_:mult_sign
M_RTLSIM_MULT_UNS_:mult_uns M_RTLSIM_ADD_:adder M_RTLSIM_INCR_:incr
M_RTLSIM_DECR_:decr M_RTLSIM_SUB_UNARY_:minus M_RTLSIM_SUB_BIN_:subtract
datapath__:datapath datapath:datapath"

The last two module_names in the example are netlist module prefixes.

FormalPro Reference Manual, 2018.142

Command Reference
-debug

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If, for example, you do not want to process adders with the advanced method, remove the
M_RTLSIM_ADD_:adder entry from the command. The entire quoted command string is
needed for each usage.

Related Topics

-dataPath

dpAddGroup

-debug
Global

Alias: None

Controls the amount of information generated for cross-probing between the FormalPro debug
tool and the original design files.

Usage

• -debug — generates cross-probe debug information (default).

• -nodebug — does not generate cross-probe debug information.

Description

The information generated during the Compile stage allows for easier cross-probing from the
debug tool back to the original design files.

The -nodebug option limits the generation of cross-probing information.

GUI Access

Examples

formalpro -debug \
 -a design_a.v \
 -b design_b.v

Location: Options dialog box —
General pane > Control tab

Action: Enable: Select Debug info

Disable: Unselect Debug info

Command Reference
+define+definition[=value]

FormalPro Reference Manual, 2018.1 43
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

+define+definition[=value]
Design-specific

Alias: None

Compiles a Verilog definition contained in one of your RTL design files.

Usage

• +define+definition[=value]...

o definition — Name of the definition.

o value — Values assigned to the definition (optional).

Description

Use this switch if your Verilog RTL files contain ‘ifdef statements, and you want to compile the
code within the statement.

GUI Access

Examples

Assume that a Verilog RTL design design_a.v contains the following code:

‘ifdef INCLUDE_REG
reg [31:0] data_out; ‘endif

For FormalPro to properly compile this design, you need to specify that the above code is used,
as shown in this example:

formalpro -a +define+INCLUDE_REG design_a.v \
 -b design_b.v

designFile
Design-specific

Alias: None

Specifies the location of design file(s) to verify.

Location: Project tab > A tab

Project tab > B tab

Action: Type the switch and argument on a new line, as you would a design file
location.

FormalPro Reference Manual, 2018.144

Command Reference
-dffWithEnable

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• designFile — Specifies the files that make up the design to verify.You can specify any
number of space-separated files. Wildcards are allowed.

Description

This argument specifies the files that make up the design to verify. You can also specify design
files listed within a file with the -fl switch.

FormalPro processes design files in the order they are specified on the command line. If you
specify a directory, every file within the directory is used as a design file.

GUI Access

Examples

formalpro -a ./design/des_a1.v ./design/des_a2.v \
 -b design_b.v

formalpro -a ./design/des_a*.v \

 -b design_b.v

-dffWithEnable
Design-specific

Alias: None

Determines whether D Flip-Flop (DFF) primitives use a clock-enable port.

Usage

• -dffWithEnable (default) — Enables DFF primitives that use a clock-enable port.

• -noDffWithEnable — Disables DFF primitives that use a clock-enable port and instead,
creates enable logic on the DFF port with the enable-port tied to true.

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: 1. Type the path to your design file or use:

2. Ensure that the dropdown menu to the left of the entry is set to the
empty value.

Command Reference
-diffOnQ

FormalPro Reference Manual, 2018.1 45
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

The default behavior can also be changed in the FORMALPRO_HOME/lib/formalpro.ini file or
the .wsp file by setting the dffwithenable option to false.

GUI Access

Examples

formalpro -a test.vhd mydff.v -nodffwithenable -b netlist.v

-diffOnQ
Global

Alias: None

Disables the creation of comparison points at the Q output of sequential elements in addition to
the comparison points at the D, Set, Reset, Enable and Clock inputs.

Usage

• -diffOnQ — Creates comparison points (default).

• -nodiffOnQ — Disables functionality.

Description

FormalPro creates a comparison point for the Q output, in addition to the default comparison
points. For an example of this behavior, refer to the heading, “Different Clocking Schemes,” in
section “Handling Known Differences in Designs” of the FormalPro User’s Manual.

Tip
When debugging a specified -diffOnQ, debug the Q targets, rather than the inputs of the
sequential element.

Location: Options dialog box

A specific pane > RTL tab

B specific pane > RTL tab

Action: Enable: select DFF with enable

Disable: deselect DFF with enable

FormalPro Reference Manual, 2018.146

Command Reference
-diffOnQOnly

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -diffonq \
 -a design_a.v \
 -b design_b.v

-diffOnQOnly
Global

Alias: None

Disables the creation of comparison points at the Q output of sequential elements without
creating any comparison points on the inputs.

Usage

• -diffOnQOnly — Enables functionality (default).

• -nodiffOnQOnly — Disables functionality.

Description

FormalPro creates a comparison point only for the Q output. For more information about
comparison points on inputs and outputs, refer to the heading, “Different Clocking Schemes,” in
section “Handling Known Differences in Designs” of the FormalPro User’s Manual.

Tip
When debugging a run where you specified -diffOnQOnly, you should always debug the Q
targets, rather than the inputs of the sequential element.

The logic cones fanning into the Q output target include all of the logic contained in the targets
on the inputs of the register. By solving only the Q target, you avoid solving much of the logic
multiple times. Not only are there fewer targets to be solved when you use the -diffOnQOnly
option, but you also eliminate the “ignorable” differences that are reported on the register
inputs; FormalPro is no longer solving the input targets individually. Ignorable differences on
the inputs occur when you are verifying gated-clock designs.

Location: Options dialog box —

General pane > Solve tab

Action: Enable: Select Solve Q targets

Disable: Unselect Solve Q targets

Command Reference
-dividerArchitecture

FormalPro Reference Manual, 2018.1 47
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -diffonqonly \
 -a design_a.v \
 -b design_b.v

-dividerArchitecture
Design-specific

Alias: None

Specifies the architecture used for compiling dividers in your design so that they match the
architecture used by your synthesis tool.

Usage

• -dividerArchitecture architecture

Architecture— Specifies which architecture to use when compiling dividers. Options include:

• rpl — Ripple adder (default).

• cla — Carry-look-ahead adder.

• cla2 — Carry-look-ahead adder.

Description

This switch specifies that any DW_div divider in an RTL design has been compiled as a specific
architecture in your gate-level design. This information instructs the compile stage on how to
generate the internal database to most closely resemble your gate-level design. For further
information on how FormalPro compiles dividers, refer to the section “Specifying Divider
Architectures” in the FormalPro User’s Manual.

Location: Options dialog box —

General pane > Solve tab

Action: Enable: Select Solve only Q targets

Disable: Unselect Solve only Q targets

FormalPro Reference Manual, 2018.148

Command Reference
-DWPipeTransparent

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

For this example, FormalPro will compile all dividers in your RTL design with the carry-look-
ahead architecture.

formalpro -a ./rtl/design_a.v -dividerarchitecture cla \
 -b ./gate/design_b.v

-DWPipeTransparent
Global

Alias: None

Makes certain DesignWare modules transparent internally with the transparent object
command.

Usage

• -DWPipeTransparent — Makes some DesignWare modules transparent.

• -noDWPipeTransparent — Performs full testing for DesignWare modules.

Description

Certain DesignWare modules are always retimed by gate-level synthesis tools. When this
option is enabled, the modules will be made transparent by internally using the transparent
module command. This user option accounts for all name manipulations and will cover all
instances. When a retimed module is made transparent, its registers are changed to buffers and
the combinational logic is tested without the false errors from retimed register placement. You
must inspect and verify that the registers are sequentially correct for his application. The
fp_utility “pipeline_retime” and application note support this effort as do other Mentor
products.

The following modules are affected by this option:

• dw_div_pipe

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Divider architecture dropdown menu

Action: Select argument.

Command Reference
-eco

FormalPro Reference Manual, 2018.1 49
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• dw_mult_pipe

• dw_prod_sum_pipe

• dw_sqrt_pipe

• dw02_mult_2_stage

• dw02_mult_3_stage

• dw02_mult_4_stage

• dw02_mult_5_stage

• dw02_mult_6_stage

• mgc_mul_pipe

You can inspect the resulting constraints from the internal text file *.cache/internal/match/
outputFiles/{A,B}.SysConstraints.

-eco
Scope: Global

Alias: None

For designs with functional differences, identify a minimal logic change from the A side (the
reference or desired functionality) that can correct the differences if substituted properly into the
B side. If requested, the B side design is edited and the modified netlist can be written out.
These identified difference regions can also be displayed in the debug schematic to aid in the
debug process.

Usage

• -eco generate — Analyze difference regions in the A and B side. Generate a patch
module containing Verilog primitives that describe the difference as well as a report to
identify characteristics of the difference regions.

• -eco final — Given information created using “-eco generate”, insert patch logic
properly into B side modules to correct the differences.

Description

The use of LEC in an Engineering Change Order (ECO) flow can minimize the time needed to
modify the original design such that new behavior in the ECO design is seen. The LEC compare
feature ensures that the final netlist is a functional match to the required change. For all
subsequent features, the user first successfully runs the FormalPro tool to create a cache where
logic differences are detected. Using the “-eco generate” option, the tool analyzes the difference
region between the A and B side designs. The tool writes out logic changes learned from the A
side that correct the related B side modules. These change-logic modules are in terms of

FormalPro Reference Manual, 2018.150

Command Reference
-eco

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

unmapped Verilog primitives and are written out into the <cache>/eco directory with names of
the form “unmappedECO_<moduleName>.v”. A report is created and also written out to the
<cache>/reports/ecoGenerate.report file. The ecoGenerate.report file contains information
such as the A side primitives used in the patch, the B side primitives and cells that are removed,
and the A and B side boundary signal pairs that define inputs and outputs of the patch logic.
After the “-eco generate” option completes, generated logic and information can be used in two
ways. The first use model is if the user is engaged in an ECO flow where changes are to be
applied in a minimally invasive way to an already laid out design, late in the design cycle. The
second use model is a user debugging differences encountered in the classic LEC usages.

During an ECO flow, data generated by the “-eco generate” option is helpful in two ways:

• The report file and patch logic can give an indication of the size and scope of the ECO.
In some cases, the ECO might be too large in terms of logic changes or too risky in
terms of the amount of logic or patch IO which is necessary.

• Assuming the patch logic is acceptable, the user then synthesizes the unmapped change
logic into optimized and technology-mapped Verilog modules. After this step, the “-eco
final” option is used.

For the user involved in debugging a logic difference, data generated by the “-eco generate”
option may be helpful. The FormalPro tool uses significant CPU resources in some cases trying
to find the minimal logic differences between the two designs. This can help speed up the
debugging task overall in two ways:

• A user might simply examine the report and difference logic to better understand and
help debug differences between the two designs.

• If a target schematic is viewed in the debugger for a particular difference target, coloring
is used to indicate regions of these target cone(s). These regions are the Equivalence
region (white by default), the Difference region (red by default), and the
Correspondence region (orange by default).

The Correspondence region is enabled with ECO capabilities. When understanding the logic
driving the A and B sides of a target, it is helpful to define these regions:

• Equivalence region — The region of target fanin logic that is proven equivalent.

• Difference region — The region of target fanin logic that is proven in-equivalent.

• Correspondence region — The region of target fanin logic that is driven by the
difference region but is equivalent. This region is not proven equivalent in the classic
sense because it is driven by the difference region which is proven in-equivalent.

Command Reference
-eco

FormalPro Reference Manual, 2018.1 51
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

These regions are illustrated in the following diagram, which represents A side and B side logic
for one target. The objective of the “-eco generate” option is to identify the minimal ECO and
bad logic, as well as the input and output signals of that logic.

An example schematic with default coloring for these regions is shown in Figure 2-1. The
equivalences are white, the correspondences are orange, and the actual logic differences are red.
Change these coloring options in the GUI Preferences tab under the ECO Colors tab.

Figure 2-1. ECO Region Schematic Coloring

FormalPro Reference Manual, 2018.152

Command Reference
-eco

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

As alluded to earlier, if the user is performing an ECO of a laid-out design, then further steps, as
follows, are required after the “-eco generate” option:

• Each unmapped module in the <cache>/eco directory must be synthesized (optimized
and technology mapped) into a corresponding mappedECO_<module>.v file. For
example, if a Verilog module is named modA then synthesis uses
unmappedECO_modA.v as input and produces mappedECO_modA.v as output. Note
that the file name prefixes of unmappedECO_ and mappedECO_ are required and the
naming scheme for the module name must be followed. The file location must also use
the <cache>/eco path for correct operation.

• Run the FormalPro tool again using the “-eco final” option. This produces the final
“patched” design and modules. For each module in the design with edits (contained in
mappedECO_<module>.v), a file <module>_patched.v is created. In addition, a
patchedDesign.v file with the entire patched design is created. In patched designs, all
design hierarchy and names are left unchanged, unless they are involved in the actual
difference logic. The -ecoDir option may be used to specify an output path for
<module>_patched.v files.

Note that there are important considerations for the ECO use model:

• The ECO design must be the A side and the design to be patched is the B side.

• For best results, the ECO design (A side) should be a technology mapped netlist.

GUI Access

Examples

The user first runs the FormalPro tool to create a cache with logic differences.

Location: Tools tab > ECO Operations > Start ECO

Action: Initiate ECO Mechanisms.

Location: Tools tab > ECO Operations > Extract ECO

Action: Same as -eco generate using command line.

Location: Tools tab > ECO Operations > Finalize ECO

Action: Same as -eco final using command line.

Location: Tools tab > ECO Operations > Add Correspondence Constraint

Action: Add a correspondence constraint.

Location: Debug Tab > Difference Region Analysis

Action: Same as -eco generate using command line.

Command Reference
-ecoDir

FormalPro Reference Manual, 2018.1 53
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

formalpro -a changed_design.v -b previous.v -common -slib library.lib

The user then performs difference region and ECO analysis:

$FORMALPRO_HOME/bin/formalpro -eco generate -cache <nonDefaultCacheDir>

If the user wishes to debug the differences, then invoke the formalpro -gui option:

$FORMALPRO_HOME/bin/formalpro -gui

If the user wishes to perform an ECO of a laid-out design:

For each unmappedECO_<module>.v in the <cache>/eco directory:

Use synthesis to create a corresponding mappedECO_<module>.v file. Create the patched
module files (<module>_patched.v) and design (patchedDesign.v). Place these files into the
<cache>/eco location, then run the -eco final command:

$FORMALPRO_HOME/bin/formalpro -eco final

Finally, depending on the layout tool ECO capabilities, use the patched designs files to
accomplish the ECO.

Related Topics

-ecoDir

-tlist

extracteco

eco_correspond

-ecoDir
Scope: Global

Alias: None

The -ecoDir option is used in conjunction with the “-eco final” option. Use the -ecoDir option to
specify a directory pathname where final patched modules and design netlist files are written.

Usage

• -ecoDir directoryPathname — Optional option specifying a directory where final
patched design and modules are written.

Description

The -ecoDir option is used with the “-eco final” option to specify a directory where final
patched design and modules netlists are written. By default, the files are written into the

FormalPro Reference Manual, 2018.154

Command Reference
-edifFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

<cache>/eco directory. If directoryPathname exists, the new files are written into it, perhaps
overwriting files already in that directory. If directoryPathname does not exist, it is created.

GUI Access

The output directory path name can be applied interactively within the debugger tool using the
following command:

extracteco -final directoryPathName

Examples

In this example, the final module and design patch files are written into an alternate directory,
outDir.

$FORMALPRO_HOME/bin/formalpro -eco final -ecoDir ./ecoOut

Related Topics

-eco

-edifFile
Design-specific

Alias: edif

Specifies a gate-level EDIF file.

Usage

• -edif filename — Specifies a valid EDIF file to compile.

Description

This command compiles the specified file as EDIF, regardless of the file extension.

See Also

Suffix Control
Switches
(Library Files)

Switches that override the file extensions in formalpro.ini for a given
type of library file.

Suffix Control
Switches
(Design Files)

Switches that override the file extensions in formalpro.ini for a given
type of design file.

Command Reference
-encapsulateAll

FormalPro Reference Manual, 2018.1 55
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

-encapsulateAll
Scope: Design-specific

Alias: None

Encapsulates all user-defined modules.

Usage

• -encapsulateAll — Enables encapsulation.

• -noencapsulateAll — Disables encapsulation (default).

Description

The -encapsulateAll command causes all user-defined modules to be encapsulated. It is
logically equivalent to putting the following commands in the blackbox file:

encapsulate A *
encapsulate B *

Modules that are to be encapsulated have extra buffers added to the input and output ports for
every instance of that module. Unlike other hierarchical approaches FormalPro solves every
instance of a module separately.

Before encapsulation, FormalPro generates its normal flattened net list so as to allow constant
values to propagate across module boundaries. The buffers that were added at the module
boundaries are then used to create new comparison points and independent variables. This is

-sv Overrides the Verilog file extension for design/library files in the
given design scope (-a or -b), compiling the files as SystemVerilog
files.

-sv2009 Overrides the file extension of the specified file, compiling the file as a
2009-formatted SystemVerilog file.

-vhdl2008File Overrides the file extension of the specified file, compiling the file as a
2008-formatted VHDL file.

-verilogFile Overrides the file extension of the specified file, compiling the file as a
Verilog file.

Location: Project tab > A tab

Project tab > B tab

Action: Select-edif from the dropdown menu to the left of the specific design file.

FormalPro Reference Manual, 2018.156

Command Reference
-f

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

done using the same mechanism as the “make_pi” and “make_po” constraints. The new po's
and pi's have names that are based on the instance name and the port name of the encapsulated
module. These names have been found to be the most likely to match up between the A and B
designs.

The new po's and pi's are then matched up using FormalPro’s usual matching system. There is
one difference, however. If a make_po or make_pi cannot be matched, FormalPro will
reconnect the two points. The reporting system tells you that the ports were not matched but that
the unmatched ports will be benign.

There are many reasons why a module in one design would have ports that don't exist in the
other. For example, the two designs might have different hierarchical structures such that what
is done in a single module in one design is done in two modules in the other. Reconnecting the
ports will automatically fold in the hierarchy boundary.

Another reason might be test circuitry. Consider an ATPG system that exists only on the B
side. In a flattened comparison, the ATPG signal is forced to be disabled and the usual constant
propagation will ensure that it doesn't cause differences. However, the enable signal has to reach
every register and this signal may be added to every module interface in the design. It won't
exist in the original design, so FormalPro won't be able to match it up. Once again,
reconnecting it will prevent any problems in solving.

GUI Access

Examples

formalpro -encapsulateAll

-f
Global

Alias: None

Specifies an external file of command line switches used to invoke FormalPro.

Usage

• -f command_file — Specifies a command file.

Location: Options dialog box —

Blackbox pane

Action: Enable: Select all modules

Disable: Unselect all modules

Command Reference
-f

FormalPro Reference Manual, 2018.1 57
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

The -f switch specifies a text file of frequently used command line switches. For example:

// commented line
-cache ./my_formalpro.cache

In the command file, enclose environment variable names in curly brackets. For example,

${PWD}rest/of/the/path

If the boundary between the environment variable and a concatenated string is marked by a
delimiter, the curly braces are optional. For example, the following definitions are equivalent:

${PWD}/rest/of/the/path
$PWD/rest/of/the/path

Environment variables are not expanded in the command line output in the log file.

Insert comments into the command file as follows:

• # and // — FormalPro treats everything after the comment character, up to a newline, as
a comment.

• /* */ — FormalPro treats all characters between these comment characters as a
comment.

GUI Access

Examples

The following command_file:

// common_switch.txt -- commonly used switches
-cache ./my_fp.cache

translates to the following invoke commands:

formalpro -f common_switch.txt \
 -a design_a.v \
 -b design_b.v

formalpro -cache ./my_fp.cache \

 -a design_a.v -b design_b.v

Location: Options dialog box —

General pane > Control tab > Other Options entry box

Action: Type the switch and argument as they would appear on the command line.

FormalPro Reference Manual, 2018.158

Command Reference
-fastVerilogRead

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-fastVerilogRead
Design-specific

Alias: None

Enables fast processing of Verilog netlist files for the A, B, or common design scopes.

Usage

• -fastVerilogRead — Optional switch that speeds up the verification of Verilog input
files by only processing the sections that declare modules targeted for verification.

• -noFastVerilogRead — Disables fastVerilogRead mode and processes the entire
contents of all the input Verilog files before extracting the needed module hierarchy.
Default.

Description

The fastVerilogRead mode enables the FormalPro gate-level Verilog compiler to speed up the
processing of large netlist files when a sub module is specified. This is very useful when there is
a large Verilog netlist that only needs a small portion of the modules loaded for verification.

When enabled, FormalPro reads netlists in fastVerilogRead mode initially, but the following
conditions can cause FormalPro to revert to full-file processing:

• All of the modules declared in all the input files are targeted for the verification run.

• No top-level module is specified.

• The -rtl compile mode is specified.

• Every module targeted for verification is declared at the top of its own file.

• The input file is encrypted or compressed, which will cause all of its contents to be read
in.

GUI Access

None

Examples

The following example enables the fastVerilogRead mode for design A:

formalpro -a -mod uart_top design_a.v -fastVerilogRead \
 -b -mod uart_top design_b.v

Command Reference
-fl

FormalPro Reference Manual, 2018.1 59
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-fl
Design-specific

Alias: None

Loads design files from the specified text file.

Usage

• -fl designFileList — Specifies the name and location of the test file.

Description

This switch allows you to specify which files are used in the verification through the use of a
text file. This is useful for, but not specific to, designs using VHDL and mixed-language design
flows (due to their order-dependence).

You can also specify your design files individually by using the designFile argument.

Within the designFileList, you can specify other file-specific switches, such as +incdir+,
+define+, -work, -87, -93, -2008, -svFile, -vhdlFile, -verilogFile. The designFileList only
accepts the # comment character, which treats everything between it and the end-of-line as a
comment. You can specify environment variables within the designFileList.

GUI Access

Examples

formalpro -a -fl design_a.fl \
 -b ./gate/design_b.v

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: 1. Type the path to your file list or use:

2. Select fl from the dropdown menu to the left of file list path.

FormalPro Reference Manual, 2018.160

Command Reference
-flow

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

where design_a.fl is:

design file list for design A
-87 ./rtl/ser_out_mux.vhd
-work myworklib
-vhdlFile ../rtl/myVhdlFile.vhl
-87 ./rtl/status_registers.vhd
-93 ./rtl/transmit_rcv_control.vhd
-work work
-87 ./rtl/Amodule_top.vhd
-87 ./rtl/chaplin.vhd
./rtl/shadow.v
./rtl/artig.v

-flow
Scope:Global

Alias: None

Loads a built-in or custom flow file.

Usage

• -flow {customFile | builtinFlow}

customFile — Name of the custom flow file. A path must be supplied if the file is not in
a searched location. For more information, see “Creating a Custom Flow File” on
page 61.

builtinFlow — Built-in flow file. Options include synthesis vendors, certain features,
and solve engine files. Vendor types overwrite each other and solve engine flows
overwrite each other. The contents of a flow file can be read from the GUI by opening
the flow named in the command line.

o Oasys - Supports the Oasys-RTL tool

o readVSDC - Supports in-line reading of guide files for the Oasys-RTL and Design
Compiler tools. For more information, see “readVSDC Flow File” on page 297“.

o Precision - Supports Precision RTL and RTLPlus

o dc_ultra - Supports Synopsys Design Compiler

o ibmlssd - Supports gate-level designs optimized with LSSD post-synthesis
processing. FormalPro converts LSSD-style registers in your RTL design into latch
pairs (master/slave configuration).

o ti_asic - Provides instructions to the FormalPro Library Compiler specific to Texas
Instruments ASIC libraries.

o CadenceRC - For Cadence RTL/gate compare

Command Reference
-flow

FormalPro Reference Manual, 2018.1 61
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o Nitro-SoC - For Mentor Olympus/Nitro router check gate/gate

o XST - For Xilinx XST or Vivado synthesis RTL/Gate compares

o xilinx_g2g - For Precision/Synplify netlist compared to Xilinx route

o altera_g2g - For Precision/Synplify netlist compared to Quartus route

o actel_g2g - For Precision/Synplify netlist compared to Actel/Microsemi route

o Synplify_Actel - For Synplify RTL/gate when Actel/Microsemi parts used

o DSP2 - Solve engine file. Good for digital filters.

o ExtSAT - Solve engine file. Uses an academic SAT solver to replace default

o retime - Use this in a Precision FPGA flow to resolve normal insertions of RAM and
DSP macros in a Xilinx flow. For more information, see “-retime” on page 111.

Note
The Precision retime option is not enabled with the FormalPro retime support.
The Precision “retime” and “gated clock” functions are also not supported by

this option.

For optimal Xilinx DSP performance, an added Precision option may be required.
See current application notes.

Description

A flow file contains command line switches that alter the default settings for a particular run.
Multiple -flow switches are processed in the order they are specified on the command line. For
example, if you specify two flow files that contain settings for the same switch, the last flow file
read is the one that is used. Settings explicitly entered on the command line override flow-file
settings.

When multiple -flow files are specified, they are cumulative. For example:

formalpro -flow oasys -flow retime

The built-in flow files are located in the following directory:

$FORMALPRO_HOME/pkgs/fv/userware/default/flows

Creating a Custom Flow File

Use the following steps to create a custom flow file:

1. Save a copy of the $FORMALPRO_HOME/lib/formalpro.ini file to your home
directory.

FormalPro Reference Manual, 2018.162

Command Reference
-formalEyes

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Delete the settings not needed for your flow file. Do not delete any settings from the
[Flow], [A], and [B] sections.

3. Modify the remaining lines to set the options for your custom flow. Be sure to maintain
the sections and format of the .ini file. For more information, see Initialization File in the
FormalPro User’s Manual. Refer to the default formalpro.ini file for examples of option
settings.

4. Save the file to a unique name with the .ini suffix in one of the locations searched by
FormalPro. FormalPro automatically searches the following locations in the order
specified:

a. current working directory

b. your home directory

c. directory specified with the $FORMALPRO_FLOW environment variable

Note
Do not save the file within a formalpro.cache or in the $FORMALPRO_HOME
tree.

GUI Access

Examples

The following example uses a custom flow file to specify VHDL work libraries.

The custom flow file mylibs.ini specifies the libraries:

[library]
m3s001lib = $HOME/demos/demo_2.3/m3s001lib
m3s003bolib = $HOME/demos/demo_2.3/m3s003bolib

The custom flow file is loaded as follows:

formalpro -flow mylibs.ini -a a.vhd -b b.vhd

-formalEyes
Scope:Design-specific

Location: Options dialog box —

General tab > Flow selection dropdown box.

Action: 1. Select a flow file.

2. Click Add button. Once added, right-click on the flow file to read it.

Command Reference
-formalEyes

FormalPro Reference Manual, 2018.1 63
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alias: None

Reports potential design problems.

Usage

• -formalEyesFloat— checks for undriven or floating nets

• -formalEyesMulti— checks for multi-driven net contention

• -formalEyesX— checks for capture of X assignments

• -formalEyesConstRegs— checks for constant registers

• -formalEyesAll— enables all FormalEyes checks

Description

The FormalEyes commands detect and report design conditions that have the potential to cause
unintended circuit behavior. Many of the potential design errors that FormalEyes looks for are
difficult to detect with traditional verification techniques such as simulation of functional
vectors. FormalEyes uses formal, structural, and functional analysis techniques to identify
objects that are replicated, redundant, optimizable, or constant.

FormalEyes can identify and report the following types of potential design errors:

• non-toggle registers

• no-path registers

• constant registers

• constant state vector bits

• multiply driven net contention

• X assignment captured

• undriven/floating net captured

• redundant mux logic assignments

Typically, when an error manifests itself, it causes one or more of these items to occur. For
example, an error in bus-control logic might present itself as a bus contention error or as a
floating bus error. Another example would be an error in the state-transition logic of a FSM that
presents itself as a constant state vector bit or as a non-toggle register. In RTL code, an X
assignment that was never intended to be captured in a register becomes capturable.

Using FormalEyes to find and report potential misbehavior when an equivalency check
difference occurs gives you a convenient way to screen the reported events to determine if an
unintentional event has occurred, and enables you to concentrate on fixing any design errors.

FormalPro Reference Manual, 2018.164

Command Reference
-fpga

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

While FormalEyes generates reports that identify potential misbehavior, it is up to you to decide
whether or not the event is actually an intended behavior. For example, a designer could have
intended for particular state vector bits to be constant, and FormalEyes would still report the
event as a potential misbehavior.

While FormalEyes is capable of uncovering some types of design misbehaviors, the designs
should not be considered free of these defects when no defects are reported by FormalEyes.
FormalEyes puts forth a “good” effort to uncover these problems, but some of these errors may
require more time to uncover than what is currently allocated to FormalEyes within the
Formalpro tool.

GUI Access

Examples

The following example will check design A only for captured floating nets and captured X
assignments, whereas design B will have all checks run on it:

formalpro -a -formalEyesFloat -formalEyesX -b -formalEyesAll

-fpga
Scope:Global

Alias: None

Specifies the FPGA vendor.

Usage

• -fgpa {altera | actel | xilinx}

Description

This switch specifies the FPGA vendor. When invoking FormalPro using formalpro_fpga, the
vendor must be specified, and the corresponding vendor-qualified license must be available, in
order to start a verification run.

Location: Options dialog box —

A specific pane > FormalEyes tab >

Bspecific pane > FormalEyes tab >

Action: Enable: Click the Set All button or select specific checks

Disable: Click the Clear All button

Command Reference
-FSMencoding

FormalPro Reference Manual, 2018.1 65
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

$FORMALPRO_HOME/bin/formalpro -fpga xilinx \
-a \
-y $FORMALPRO_HOME/pkgs/fv/lib/replacementLib/xilinx \
-y <path>/unisims -mod <top_module> -rtl <synth_netlist>\
-b \
-y $FORMALPRO_HOME/pkgs/fv/lib/replacementLib/xilinx \
-y <path>/simprims \
-rtl <place_route_netlist> \
-mod <top_module>

-FSMencoding
Scope:Design-specific

Alias: None

Specifies that Finite State Machines in an RTL design should be encoded with the specified
scheme during the Compile stage.

Usage

• -fsmencoding {ignore | auto | binary | gray | onehot | random}

o ignore — compiles using binary encoding (default).

The only difference is when your Verilog design contains a parameter statement
containing a //synopsys enum directive, for example:

parameter [2:0] //synopsys enum days Mon=3’b010, Tue =3’b110,
Wed=3’b001;
reg [2:0] /* synopsys enum days */ WeekDays;

FormalPro encodes the states as specified in the parameter statement.

o auto — behaves similar to the ‘onehot’ argument.

o binary — compile using binary encoding.

o gray — compile using gray-code encoding.

o onehot — compile using one hot encoding.

o random — compile using random binary code assignment.

Location: Project tab > Options button > Compile tab > FPGA technology field

Action: Use the drop-down to select Altera, Actel, or Xilinx

FormalPro Reference Manual, 2018.166

Command Reference
-gate

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

When you specify a FSM encoding scheme for your RTL design, FormalPro applies the scheme
to all FSMs found in both the A and B designs. You will typically use this switch in an RTL-to-
Gate run.

GUI Access

Examples

formalpro -a -fsmencoding onehot./rtl/design_a.vhdl -b ./gate/design_b.v

-gate
Scope: Design-specific

Alias: None

Specifies that a design scope consists completely of gate-level design files.

Usage

• -gate

Description

FormalPro, by default, parses your design files to determine if they are RTL- or gate-level. This
switch explicitly informs FormalPro that a design is gate-level.

You should not specify this switch if a design is not completely gate-level format because
FormalPro will black box any module containing RTL constructs.

GUI Access

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

FSM encoding dropdown box

Action: Select argument

Location: Options dialog box —

A specific pane >Control tab >

B specific pane > Control tab >

Design level dropdown box

Command Reference
-gatedClocks

FormalPro Reference Manual, 2018.1 67
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -a ./rtl/design_a.vhd \
 -b -gate ./gate/design_b.v

-gatedClocks
Scope: Global

Alias: -gatedClock

Considers gated-clock structures during verification.

Usage

• -gatedClocks

Description

You should use this switch when you are verifying a reference design against a modified design
on which you have performed power optimization. Typically, power optimization introduces
gated-clock structures into the design using latches, which results in your modified design
containing matchable objects that do not exist in your reference design.

In the above scenario, if you do not specify this switch, FormalPro classifies these latches in
your modified design as unmatched objects, and declares targets in their fan-out as “fed by
unmatched”.

When you specify this switch, the tool automatically determines if the latches result from gated-
clock structures and can safely declare the latches as transparent. These latches are reported in
detail in the report available from the Reports > Removed > Simplified Registers menu item.

GUI Access

Examples

formalpro -gatedclock
 -a ./rtl/design_a.vhd \
 -b ./gate/power_optimized_design_b.v

Action: Select gate

Location: Options dialog box —

General pane > Solve tab

Action: Enable: Select Gated clock designs

Disable: UnselectGated clock designs

FormalPro Reference Manual, 2018.168

Command Reference
-noGateOptimization

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro reports any latches it declares as transparent, resulting from the use of this switch, in
the file formalpro.cache/reports/simplifiedRegs.report, as shown:

...

5. Latches Used in Gated-Clock Structure(converted to transparent)
--
\B.top.logic.fz80.reg.clk_gate_reg.latch.q_ppi
\B.top.logic.herc.m_blk.clk_gate_3_msb_reg.latch.q_ppi
\B.top.logic.fz80.arg.clk_gate_reg.latch.q_ppi

-noGateOptimization
Design-specific

Alias: None

Controls gate optimization.

Usage

• -gateOptimization — Optional switch that enables gate optimization. Can also be
specified in the formalpro.ini. Default setting.

• -noGateOptimization — Optional switch that disables gate optimization. Can also be
specified in the formalpro.ini.

Description

By default, FormalPro optimizes (converts and eliminates) the following gates:

• Gates with constant inputs. For example, a 2-input AND gate with one input tied high is
translated to a BUF buffer.

• Mux-like gate logic containing a feedback path. When appropriate, this gate logic is
replaced with a registered latch.

Examples

Example 1

The following example disables gate optimization:

formalpro -nogateoptimization

Example 2

The following example enables gate optimization:

formalpro -gateoptimization

Command Reference
-generics

FormalPro Reference Manual, 2018.1 69
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-generics
Scope: Design-specific

Alias: -generic

Specifies the name and value of generics specified in the top-level module of your VHDL RTL
design.

Usage

• -generics name=value

o name — the name of a generic. FormalPro automatically converts this argument to
all lowercase characters.

o value — the value assigned to a generic name.

GUI Access

Description

You can specify any number of generics on the command line in the following format.

-generics foo=1 -generics bar=2

Examples

formalpro -a -generics foo=10 \
./rtl/design_a.vhdl \

 -b ./gate/design_b.v

-gui
Scope: Global

Alias: None

Runs FormalPro in the GUI mode.

Location: Options dialog box —

A specific pane > Generics tab

B specific pane > Generics tab

Action: Enter “name=value” information. Separate entries by a space if you
specify more than one generic.

FormalPro Reference Manual, 2018.170

Command Reference
-help

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -gui

Description

Use this switch to run FormalPro through the GUI.

You can specify global switches in addition to the -gui switch to pre-set the GUI with the global
options.

FormalPro loads all information from the formalpro.cache, if one is present, into the GUI,
allowing you to interactively analyze the previous run.

Examples

This example loads any existing formalpro.cache into the GUI:

formalpro -gui

This example starts the FormalPro GUI in FPGA-only mode, with Xilinx specified as the FPGA
vendor:

formalpro_fpga -gui -fpga xilinx

This example loads the cache my.cache, if it exists, into the GUI:

formalpro -gui -cache my.cache

This example does not load any existing cache into the GUI, but does preset the GUI with the
specified options:

formalpro -gui -loglevel full -cache my.cache

-help
Scope: Stand-alone

Alias: None

Displays text files with quick-reference help on several topics.

Usage

• -help [blackbox | match | constraints | rules] — when you specify this switch with no
argument, you receive a help file for the formalpro command.

o blackbox — displays help on creating black boxes.

o match — displays help on creating explicit matches.

Command Reference
-noheuristicNameLookup

FormalPro Reference Manual, 2018.1 71
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o constraints — displays help on writing constraint files.

o rules — displays help on writing implicit match rules.

Description

The help files displayed give a quick overview of the topics selected. You can also access these
same files from within the GUI by selecting the Help menu.

GUI Access

Examples

formalpro -help match

-noheuristicNameLookup
Scope: Global

Alias: None

Disables the resolution of port/register names using an internal name database.

Usage

• -heuristicNameLookup — Automatically resolves names (default).

• -noheuristicNameLookup — Disables the automatic resolution of port/register names
and returns errors when names do not resolve.

Description

The heuristicNameLookup feature uses a database generated at compile time to try and match
unresolved names within constraint and match files. Only tests where name warnings currently
occur should be impacted. This option is enabled for all default flows; If you find that it causes
errors, you can disable it and manually correct the names involved.

All corrections are logged in the report file and a warning is output to the main log.

GUI Access

Location: Help menu

Location: Options dialog box —

General pane > Match tab

FormalPro Reference Manual, 2018.172

Command Reference
-ignoreNoPath

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -heuristicNameLookup -constraintFile ./vsdc.constraint \
-a design_a.v \
-b design_b.v

-ignoreNoPath
Scope: Global

Alias: None

Controls how FormalPro matches comparison points that do not have a path to a primary output.

Usage

• -ignoreNoPath — ignores these comparison points (default).

• -noignoreNoPath — attempts to match these comparison points.

Description

FormalPro reports these comparison points in the ignorable_objects.report file. You can access
the report from the GUI by selecting the Reports > Constraints > Ignorable objects on the
main menu.

GUI Access

Examples

formalpro -noignorenopath \
 -a design_a.v \
 -b design_b.v

-inferVHDLorder
Scope: Design-specific

Action: Enable: Select heuristicNameLookup

Disable: Unselect heuristicNameLookup

Location: Options dialog box —

General pane > Match tab

Action: Enable: Select Ignore no path targets

Disable: Unselect Ignore no path targets

Command Reference
+incdir

FormalPro Reference Manual, 2018.1 73
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alias: None

Disables the automatic determination of the order of VHDL design files in a design scope.

Usage

• -inferVHDLorder — activates this functionality (default).

• -noinferVHDLorder — deactivates this functionality.

Description

Deactivate this functionality to manually specify the order of your RTL design files.

GUI Access

Examples

The following example shows how to instruct FormalPro to compile a directory of VHDL files
and automatically infer the correct VHDL order of those files.

formalpro -a -infervhdlorder \
-fl ./rtl/vhdl/filelist.fl \

 -b design_b.v

+incdir
Scope: Design-specific

Alias: None

Specifies the location of a directory referenced by a Verilog include statement.

Usage

• +incdir+include_dir

include_dir — specifies the directory that contains your included files.

Location: Options dialog box —

A specific pane > RTL tab

B specific pane > RTL tab

Action: Enable: Select Infer VHDL order

Disable: Unselect Infer VHDL order

FormalPro Reference Manual, 2018.174

Command Reference
-libConfigFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

You should use this switch if your Verilog RTL files contain ‘include statements and you want
FormalPro to compile the code within the referenced file.

Your ‘include statements generally reference a file, but for this switch, you need to specify the
directory that contains the file, not the file itself.

When you have multiple ‘include statements that point to different directories, you must specify
+incdir+ for each directory.

The order in which you specify +incdir+ on the command line, or within file lists, determines
the precedence order for FormalPro. In cases where ‘include files with the same name exist in
more than one directory, FormalPro uses the first one encountered, as specified on the command
line.

GUI Access

Examples

formalpro -a +incdir+./rtl/inc_files/ \
./rtl/design_a.v \

 -b ./gate/design_b.v

-libConfigFile
Scope: Design-specific

Alias: -lcf

Specifies rules for replacing Verilog library cells.

Usage

• -libConfigFile configFileName

configFileName — specifies the location of the text file containing the replacement
rules.

Location: Project tab > A tab

Project tab > B tab

Action: Type the switch and argument on a new line, as you would a design file
location.

Command Reference
-libConfigFile

FormalPro Reference Manual, 2018.1 75
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

In some cases, Verilog technology libraries may contain behavioral or timing-check constructs
that you need to remodel for FormalPro to compile them. Once you have obtained these
remodeled libraries, you need to map the original libraries to the new libraries using a library
configuration file.

The format of the library configuration file (configFileName) consists of one entry per line,
where FormalPro ignores blank lines and comment lines prefixed by the number sign (#). Each
entry line has the following Usage:

<cellToReplace> : <replacementCell> (<verilogPortList>);

where cellToReplace and replacementCell are cell names, separated by a colon (:), and
verliogPortList is a comma-separated list of port names enclosed in parentheses. You must end
the entry line with a semicolon (;), as shown in the following example:

commented line
cellA : cellA_new (q, a, b);

You must load both the original library and the remodeled library with the library specification
switches (-alib, -v, -y, or -slib).

GUI Access

Examples

In the following example, design B relies on technology libraries that needed to be remodeled.
The directory lib_orig contains all the original libraries and the directory lib_remodel contains
the remodeled libraries (you must specify both directories in the command line).

formalpro -a ./rtl/design_a.v \
 -b -y ./lib_orig/ \

 -y ./lib_remodel/ \
 -lcf ./lcf.txt \
 ./gate/design_b.v

The file lcf.txt contains the replacement rules:

lib1 : lib1_mod (a, b, c, d);
lib2 : lib2_mod (a, b, c, d);

Location: Options dialog box —

A specific pane > Control tab > Other Options entry box

B specific pane > Control tab > Other Options entry box

Action: Type the switch and argument as they would appear on the command line.

FormalPro Reference Manual, 2018.176

Command Reference
-LibertyPGpins

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-LibertyPGpins
Either include or exclude power and ground pins declared on a CELL in a Liberty library.

Usage

• -LibertyPGpins — Includes power and ground pins.

• -noLibertyPGpins — Excludes power and ground pins.

Related Topics

fplibcomp

+libext
Scope: Design-specific

Alias: None

Specifies which extensions the tool should accept for library files, and their order of precedence.

Usage

• +libext+extension[+extension...]

extension — a file extension, with or without the period (.) character.

Description

You should use this switch along with -y for controlling library resolution.

The order in which you specify extension(s) determines the precedence when the tool
encounters two library cells of the same name.

Refer to the section “Verilog Library Resolution” in the FormalPro User’s Manual for further
information.

GUI Access

Location: Options dialog box —

A specific pane > Control tab >

B specific pane > Control tab >

Verilog library extensions entry box

Action: Type in the list of extinctions, in order of precedence.

Command Reference
+liborder

FormalPro Reference Manual, 2018.1 77
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -a designa.v -b designb.v \
-common -y ./verilog_lib/ +libext+.v+.V+.vg

+liborder
Scope: Design-specific

Alias: None

Specifies the order in which the tool searches libraries for unresolved modules.

Usage

• +liborder

Description

If the unresolved module is located in a design file, the tool initiates the search in the library file
(-v) or directory (-y) that immediately follows the design file on the command line.

If the unresolved module is located in a library, the tool initiates the search within that library.

If the module remains unresolved after the initial search, the tool then searches the next library
listed on the command line.

You cannot specify this switch along with +librescan.

Refer to the section “Verilog Library Resolution” in the FormalPro User’s Manual for further
information.

GUI Access

Examples

formalpro -a ./rtl/designA.v -b +liborder \
./gate/designb_1.v -v ./lib/lib1.v \
./gate/designb_2.v -v ./lib/lib2.v

Location: Options dialog box —

A specific pane > Control tab

B specific pane > Control tab

Action: Enable: Select +liborder button

Disable: Select desired option button

FormalPro Reference Manual, 2018.178

Command Reference
+librescan

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

+librescan
Design-specific

Alias: None

Specifies the order in which the tool searches libraries for unresolved modules.

Usage

• +librescan

Description

If the unresolved module is from a design file or a library file, the first library in the design
scope is searched. If after this initial search the module remains unresolved, the next library
listed in the design scope is searched.

If the unresolved module is from a library directory, the library directory is searched. If after
this initial search the module remains unresolved, the first library listed in the design scope is
searched.

You cannot specify this switch along with +liborder.

For more information, see Verilog Library Resolution in the FormalPro User’s Manual.

GUI Access

Examples

formalpro -a ./rtl/designA.v -b +librescan \
./gate/designb_1.v -v ./lib/lib1.v \
./gate/designb_2.v -v ./lib/lib2.v

+libVerbose
Design-specific

Alias: None

Creates additional error and warning information for Verilog libraries.

Location: Options dialog box —

A specific pane > Control tab

B specific pane > Control tab

Action: Enable: Select +librescan button

Disable: Select desired option button

Command Reference
-log

FormalPro Reference Manual, 2018.1 79
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• +libVerbose

Description

The tool outputs additional information in the logs available from the Logs > Compile >
Compile Details A|B menu items.

Refer to the section “Verilog Library Resolution” in the FormalPro User’s Manual for further
information.

GUI Access

Examples

formalpro -a ./rtl/designA.v -b +librescan +libverbose \
./gate/designb_1.v -v ./lib/lib1.v \
./gate/designb_2.v -v ./lib/lib2.v

-log
Global

Alias: None

Renames the FormalPro log files.

Usage

• -log logFileName

logFileName — String that specifies a log file name.

Description

This switch renames the file formalpro.log to <logFileName>.log, as well as the log files for the
different log levels (.mini, .compact, and .full).

Location: Options dialog box —

A specific pane > Control tab

B specific pane > Control tab

Action: Enter switch in Other design A|B options text entry box

FormalPro Reference Manual, 2018.180

Command Reference
-logLevel

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -log new_fp \
-a design_a.v \
-b design_b.v

Produces the file new_fp.log in the current directory, and the files new_fp.mini,
new_fp.compact, and new_fp.full in the logs subdirectory of formalpro.cache.

-logLevel
Global

Alias: -ll

Controls the amount of information written to the FormalPro log file and stdout.

Usage

• -logLevel [mini | compact | full]

mini —writes only the final comparison status.

compact —writes summary information for each stage. Default.

full — writes all detailed information for each stage.

Description

FormalPro always generates all three log files for each run. You can find them at the following
FormalPro cache location:

formalpro.cache/logs/
formalpro_mini.log
formalpro_compact.log
formalpro_full.log

You can alter the filenames with the -log switch. You can also access these files from the Logs
drop-down menu in the GUI.

Location: Project tab > General tab > Log file entry box

Action: Type the new name of the log file or use:

Command Reference
-masterSlaveMerge

FormalPro Reference Manual, 2018.1 81
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

The following example specifies that the FormalPro log should contain all detailed information
for the run.

formalpro -loglevel full -a design_a.v -b design_b.v

-masterSlaveMerge
Global

Alias: None

Compiles library files containing two latches in a master/slave configuration so that the register
is represented as a single DFF.

Usage

• -masterSlaveMerge — enables this functionality (default).

• -nomasterSlaveMerge — disables this functionality.

Description

This switch allows you to compile your RTL design in the same way you synthesized your
design.

GUI Access

Examples

formalpro -nomasterslavemerge \
-a ./rtl/design_a.v -b ./gate/design_b.v

Location: Options dialog box —

General pane > Control tab > Log level dropdown box.

Action: Select argument.

Location: Options dialog box —

General pane >Lib tab

Action: Enable: Select Merge Master slave

Disable: Unselect Merge Master slave

FormalPro Reference Manual, 2018.182

Command Reference
-matchFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-matchFile
Global

Alias: None

Specifies the location of a match file containing explicit match commands.

Usage

• -matchFile filename — specifies the location of the match file.

filename — a file location. Non-literal pathnames are relative to the current directory.

• -nomatchFile — instructs FormalPro to ignore a specified match file when restarting a
previous run.

Description

For further information about explicit matching, refer to the section “Match Files” on page 210.

GUI Access

Examples

formalpro -matchfile ./setup/match.cmd \
 -a design_a.v \
 -b design_b.v

-matchseq
Global

Alias: -match

Specifies the algorithms used during the match stage.

Usage

• -matchseq algorithm[:algorithm]...

Optional switch that specifies a colon separated list of the matching algorithms applied
during a run. The algorithms are applied in the order listed. By default, the
user:name_da:func algorithms are used.

Location: Project tab > General tab > User match entry box

Action: Type the path to your user match file or use:

Command Reference
-matchseq

FormalPro Reference Manual, 2018.1 83
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You must specify all applicable arguments. For example, if you only specify user,
FormalPro does not perform name matching using the default rule file. Algorithm
options include:

o user — explicit memory element and port matching based on a custom match file
specified with the -matchFile switch. If you specify an explicit match file with
-matchFile, but do not specify this argument, FormalPro automatically runs this
algorithm before any other algorithms.

o name — implicit name matching based on a custom rule file specified with the --
ruleFile switch. If no custom rule file is specified, the default rule file is used.

o name_na — name matching on registers similar to the name argument except only
canonical names are matched, not register aliases.

o name_da — same as the name argument except a first run matches canonical
names, and a second run matches alias names from any unmatched names.

o name_oa — name matching on registers similar to the name argument except only
register alias names are matched.

o graph — matching based on graph isomorphism.

o func — matching on registers based on functional techniques. This argument should
always follow the name argument in the algorithm sequence.

o func_mp — matching on registers based on multi-pass functional techniques. This
argument should always follow the name argument in the algorithm sequence. This
algorithm may cause excessive runtime on a large design with many unmatched
registers and should only be used if the func algorithm fails to achieve the desired
results.

Description

FormalPro matches elements by applying several matching algorithms. You can use this option
to control which matching algorithms are used for a run and their order. For more information,
see the section “Completing Matching” in the FormalPro User’s Manual.

GUI Access

Location: Options dialog box —

General pane > Match tab > Match sequence pane.

Action: 1. Select from the Match sequence dropdown box the first algorithm
FormalPro should run.

2. Click the Add button

3. Repeat steps 1 and 2 for each successive algorithm.

FormalPro Reference Manual, 2018.184

Command Reference
-memLimit

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following example instructs FormalPro to perform explicit matching (user) with the rules
from the file match.user and implicit rule matching on canonical names only (name_na).

formalpro -matchseq user:name_na -matchfile match.user \
-a design_a.v \
-b design_b.v

-memLimit
Global

Alias: None

Specifies the memory limit FormalPro should use when executing Binary Decision Diagrams
(BDD).

Usage

• -memLimit number

number — the memory limit in units of megabytes (MB).

Description

In some cases, HP-UX systems may report the incorrect amount of memory to FormalPro; when
this occurs, you can manually set the amount of memory that FormalPro uses.

GUI Access

Examples

formalpro -memLimit 512 \
-a design_a.v \
-b design_b.v

-mergeReplicatedReg
Global

Alias: None

Facilitates matching and solving of replicated registers.

Location: Options dialog box —

General pane > Solve tab > BDD memory limit dropdown box.

Action: Select argument.

Command Reference
-mod

FormalPro Reference Manual, 2018.1 85
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -mergeReplicatedReg

Description

Instructs FormalPro to look for instances of replicated registers so they can be matched with the
appropriate single register on the opposite design side.

An example where this option is useful is when a single register in an RTL-level design is
replicated in the gate-level design to facilitate a layout that meets timing requirements. With the
-mergeReplicatedReg option, FormalPro is able to match the two registers in the gate-level
design with the single register in the RTL design.

GUI Access

Examples

formalpro -mergeReplicatedReg -a design_a.v \
 -b design_b.v

-mod
Design-specific

Alias: -top

Specifies the top-level design module.

Usage

• -mod {moduleName | libName.entName(archName) | -entName(archName) entName}

o moduleName — Name of the top-level module for a Verilog or EDIF design.

o libName — Name of the VHDL library containing the entity. The default value is
work.

o entName — Name of the VHDL entity.

o archName — Name of the architecture the VHDL entity uses. By default, the most
recently read architecture is used.

Location: Options dialog box —

General pane > Options > Match tab

Action: Enable: Select Merge replicated registers

Disable: Unselect Merge replicated registers

FormalPro Reference Manual, 2018.186

Command Reference
-mp

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

In some instances, where there are multiple top-level modules or entities, you need to specify
which module FormalPro should recognize as the top-level. This switch also allows you to
perform a verification on sub-modules of the hierarchy.

GUI Access

Examples

formalpro -a -mod uart_top design_a.v \
 -b -mod uart_top design_b.v

formalpro -a -mod "pkg.uart_top(synth)" design_a.vhd \

 -b -mod uart_top design_b.v

-mp
Global

Alias: None

Enables and configures verification processing across multiple CPUs.

Usage

• -mpinteger

o integer — Required integer that enables multi-processor (MP) mode and specifies
the number of CPUs to use for the verification run.

Description

The MP mode divides up the processing associated with the compilation and solve phases of a
verification run into jobs and then assigns the jobs to different CPUs. You can only use the MP
mode for multiple CPUs within a single machine environment.

Location: Project tab >—

A tab > Top level entry box

B tab > Top level entry box

Common tab > Top level entry box

Action: Enter module or entity name using command line syntax.

Command Reference
-mpLimit

FormalPro Reference Manual, 2018.1 87
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

Both of the following commands invoke FormalPro and enable MP mode with 4 CPUs:

formalpro -mp 4 -a design_a.v -b design_b.v

formalpro_fpga -mp 4 -a design_a.v -b design_b.v

-mpLimit
Global

Alias: None

Specifies the max number of jobs for CPUs in multi-processing (MP) mode.

Usage

• -mpLimit integer

integer — Specifies the maximum number of jobs that can run on each CPU. The default value
for -mpLimit is 16 jobs. Set to 1 for the old MP behavior.

Description

The MP mode divides up the processing associated with the compilation and solve phases of a
verification run into jobs and then assigns the jobs to different CPUs. You can only use the MP
mode for multiple CPUs within a single machine environment.

GUI Access

Location: Options dialog box —

General pane > Control tab >

Number of processes dropdown box.

Action: A) Select argument or

B) Type number

Location: Options dialog box —

General pane > Control tab >

Number of processes dropdown box.

Action: A) Select argument or

B) Type number

FormalPro Reference Manual, 2018.188

Command Reference
-mpTimeLimit

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following command invokes FormalPro, enables MP mode with 4 CPUs and allows up to
10 jobs per CPU with a minimum time limit of 200 seconds for processing each job:

formalpro -mp 4 -mpLimit 10 -mpTimeLimit 200 -a design_a.v -b design_b.v

-mpTimeLimit
Global

Alias: None

Limits amount of processing time for each CPU in multi-processing (MP) mode.

Usage

• -mpTimeLimit integer

integer — Specifies the minimum amount of time, in seconds, allowed for each CPU to process
a job. The default value is 300 seconds.

Description

The MP mode divides up the processing associated with the compilation and solve phases of a
verification run into jobs and then assigns the jobs to different CPUs. You can only use the MP
mode for multiple CPUs within a single machine environment.

GUI Access

Examples

The following command invokes FormalPro, enables MP mode with 4 CPUs and allows up to
10 jobs per CPU with a minimum time limit of 200 seconds for processing each job:

formalpro -mp 4 -mpLimit 10 -mpTimeLimit 200 -a design_a.v -b design_b.v

Location: Options dialog box —

General pane > Control tab >

Number of processes dropdown box.

Action: A) Select argument or

B) Type number

Command Reference
-multiplierArchitecture

FormalPro Reference Manual, 2018.1 89
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-multiplierArchitecture
Design-specific

Alias: None

Specifies the architecture used for compiling all multipliers in RTL designs.

Usage

• -multiplierArchitecture architecture[_adderType][_swap]

The default setting is based on the design and flow type.

architecture — specifies the multiplier architecture. Options include:

o wall — Wallace tree architecture

o csa — Carry-save Adder architecture. Default for FPGAs.

o str — pipelined Wallace tree architecture

o nbw — non-Booth Wallace architecture. Default for Oasys-RTL flows.

o mcarch — architecture of Synopsys Module Compiler. There is no associated adder
type.

o csmult — Synopsys DesignWare multiplier.

o pparch — Synopsys DesignWare multiplier. Default for ASICs.

o adderType — specifies the final adder architecture within the multiplier. Options
include:

o cla — Carry Look Ahead adder (default for csa)

o rpl — Ripple adder

o csel — Carry Select adder

o csm — Conditional Sum Module adder (default for wall)

o bk — Brent Kung adder (default for nbw)

o swap — specifies the swap order of the operands. Options include:

o axb — compile the operands as specified in the RTL (default)

o bxa — swap the order of the operands before compiling

Note
Each time you change the multiplier architecture with this option, you must
recompile the design.

FormalPro Reference Manual, 2018.190

Command Reference
+noLibCell

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

This switch specifies that all multipliers in an RTL design are of a specific architecture. This
information instructs the compile stage on how to generate the internal database to most closely
resemble your gate-level design.

This switch is overridden, by default, if a multiplier is declared as a specific architecture
through the use of pragmas (Verilog) or attributes (VHDL) within the RTL.

For more information see the following topics:

• Specifying Multiplier Architectures in the FormalPro User’s Manual

• multiplierarchitecture

GUI Access

Examples

For this example, FormalPro will compile all multipliers in your RTL design with the non-
Booth-Wallace architecture, where the final adder in the multiplier is a Ripple adder.

formalpro -a ./rtl/design_a.v -multiplierarchitecture nbw_rpl \
 -b ./gate/design_b.v

Other examples are:

-multiplierarchitecture wall_csel_bxa
-multiplierarchitecture csa_rpl_axb
-multiplierarchitecture csa_bxa

+noLibCell
Design-specific

Alias: None

Treats Verilog files specified with -v or -y as design cells.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Multiplier architecture dropdown menu, and

Multiplier final adder dropdown menu, and

Multiplier operands swap dropdown menu

Action: Select arguments.

Command Reference
-optimizeEqOpers

FormalPro Reference Manual, 2018.1 91
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• +nolibcell

Description

When an RTL design is a part of your verification run, this switch allows you to perform
debugging and cross-probing when you specify any design files with the -v or -y library
resolution switches.

Refer to the section “Verilog Library Resolution” in the FormalPro User’s Manual for further
information.

GUI Access

Examples

formalpro -a ./rtl/designA.v \
 -b +nolibcell \

./gate/designb_1.v -v ./lib/lib1.v \

./gate/designb_2.v -v ./lib/lib2.v

-optimizeEqOpers
Design-specific

Alias: None

Prunes redundant bits from large equivalence operators during compilation.

Usage

• -optimizeEqOpers — enables this functionality.

• -nooptimizeEqOpers — disables this functionality. Default.

Location: Options dialog box —

A specific pane > Control tab

B specific pane > Control tab

Action: Enter switch in Other design A|B options text entry box

FormalPro Reference Manual, 2018.192

Command Reference
-noOverWrite

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

The following example enables the optimizeEqOpers functionality:

formalpro -optimizeEqOpers \

-noOverWrite
Global

Alias: None

Determines whether any pre-existing FormalPro cache is overwritten at the start of the run.

Usage

• -overWrite (default)

• -noOverWrite

Description

At the start of each run, FormalPro deletes any existing cache and creates a new one. Also
removed is any existing formalpro.log file.

Use -noOverWrite to preserve a pre-existing formalpro.cache. If the -noOverWrite option is
used, and the formalpro.cache is present, FormalPro exits and displays a warning. If no
formalpro.cache exists, a new one is created.

The -restart option overrides -overWrite, leaving the existing cache. In this case, any new
output files created during the run overwrite the corresponding files in the existing cache.

Use the -cache switch to preserve a pre-existing cache or use the -archive switch to save the
cache in a compressed form.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Optimize equivalent operator check box

Action: Use check box to disable/enable.

Command Reference
-parameters

FormalPro Reference Manual, 2018.1 93
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -nooverwrite \
-a design_a.v \
-b design_b.v

-parameters
Design-specific

Alias: -parameter

Specifies the name and value of parameters specified in the top-level module of your Verilog
RTL design.

Usage

• -parameters name=value

o name — Name of a parameter. This argument is case-sensitive.

o value — Value assigned to a parameter name.

Description

You can specify any number of generics on the command line in the following format.

-parameters foo=1 -parameters bar=2

For Verilog designs, this switch passes parameters by name rather than by position, so you
cannot specify -parameters “(1,2)”.

GUI Access

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Overwrite.

Disable: Unselect Overwrite.

Location: Options dialog box —

A specific pane > Generics tab

B specific pane > Generics tab

FormalPro Reference Manual, 2018.194

Command Reference
-PACheck

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -a -parameters foo=10 \
./rtl/design_a.v \

 -b ./gate/design_b.v

-PACheck
Global

Alias: None

Enables the Power Aware (PA) checker and controls the types of power-aware cells included in
the report.

In previous releases, this option was named pmCellCheck.

Usage

• -PACheck {none | all | [isolation] : [level_shifter] : [retention]}

o none — no report generated (default).

o all — reports all power-aware mismatches.

o More than one of the following may be specified, in any order, separated by a colon
(:)

• isolation — reports isolation cells mismatches.

• level_shifter — report level_shifter mismatches.

• retention — reports only mismatches between retention cells.

GUI Access

Examples

formalpro -PACheck all

formalpro -PACheck isolation:level_shifter

Action: Enter “name=value” information. Separate entries by a space if you specify
more than one parameter.

Location: Options dialog box —

General pane > Match tab

Action: Select which type of check to run.

Command Reference
-paConfigFile

FormalPro Reference Manual, 2018.1 95
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-paConfigFile
Design-specific

Alias: None

Assigns power-aware (PA) type attributes to library cells.

In previous releases, this option was named pmConfigFile.

Usage

• -paConfigFile configfile

configfile— the name (or path and name) of a file containing cell-to-type mappings.
Non-literal pathnames are relative to the current directory.

Description

Use this option to assign a PA type attribute (a string) to library cells. During the FormalPro
compilation, the attribute is assigned to each instance of the library cell. The attribute is used by
the Formalpro PA checker to identify and match PA objects.

The file configfile contains one or more statements in the following format:

cell_type LIBCELL, cell_name

where cell_name is the name the cell, and cell_type is typically one of values that are mapped to
the FormalPro PA types in formalpro.ini. The default cell_type strings in formalpro.ini are:

Examples

Assume there is a library cell named “cell2” that implements clock low retention flip-flop
behavior. This statement assigns the attribute string “CLRFF” to all instances of cell2:

CLRFF LIBCELL, cell2

You can specify a cell_type that is not one of the default strings, but you must then override the
mapping in the formalpro.ini file. For example, this statement assigns the attribute string “FOO”
to instances of cell2:

FOO LIBCELL, cell2

This changes the attribute string associated with the FormalPro PA type CLRFF to “FOO”

CLRFF CLHRFF CFRFF

ALRLA AFRFF AHRLA

LSHIFTER ISOCELL NONE

FormalPro Reference Manual, 2018.196

Command Reference
-paConfig<pa_type>

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-paConfigCLRFF FOO

Assigning Cell Type Attribute Strings Using a UPF File

The preferred way that FormalPro gets the cell type attribute string is from a UPF file, not a
configuration file (use the -UPF option, instead of the -paConfig option). The UPF command
below has the same affect as the configuration file statement.

UPF syntax:

map_retention_cell RET_FIFO -domain PD_FIFO -lib_cell_type CLRFF
-lib_model_name cell2 -port SAVE save_fifo -port NRESTORE nrestore_fifo
-port TVDD VDD -port VDD VDD_pri

Configuration file statement:

CLRFF LIBCELL, cell2

For details, refer to the UPF Standards document the syntax of the following commands:
map_retention_cell, map_level_shifter, and map_isolation_cell.

GUI Access

-paConfig<pa_type>
Design-specific

Alias: None

Maps cell_type, attribute string provided by a UPF file or a configuration file, to a FormalPro
power-aware type.

In previous releases, this option was named pmConfig<pm_type>.

Usage

• paConfigCHRFF cell_type

cell_type is a string assigned to clock high retention flip flops.

• -paConfigCLRFF cell_type

Location: Options dialog box —

A specific pane > Control tab >

B specific pane > Control tab >

Power Aware field

Action: Enter the filename, or select it using the browser.

Command Reference
-paConfig<pa_type>

FormalPro Reference Manual, 2018.1 97
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cell_type is a string assigned to clock low retention flip flops.

• -paConfigCFRFF cell_type

cell_type is a string assigned to clock free retention flip flops.

• -paConfigAHRLA cell_type

cell_type is a string assigned to active high retention latches.

• -paConfigALRLA cell_type

cell_type is a string assigned to active low retention latches.

• -paConfigAFRLA cell_type

cell_type is a string assigned to active free retention latches.

• -paConfigLSHIFTER cell_type

cell_type is a string assigned to level shifters.

• -paConfigISOCELL cell_type

cell_type is a string assigned to isolation cells.

• -paConfigNONE cell_type

cell_type is a string used for objects with no PA attribute but that are matched with an
object that has a PA attribute. Used internally by the PA checker.

Description

Use this option to map a cell_type attribute (string) to a FormalPro PA type. The PA checker
uses the attribute to identify, and report on, PA objects generated in the compile phase. Use this
option when information in a UPF file (or a Formalpro configuration file) assigns an unexpected
attribute string to a given type of PA type.

By default, attribute strings are mapped to PA types in formalpro.ini. This option overrides the
mapping specified in formalpro.ini.

Examples

Suppose that in a UPF file named “my_upf”, the cell type attribute string “clk_low_ret_ff” is
assigned to a library cell “cell2”:

map_retention_cell RET_FIFO -domain PD_FIFO -lib_cell_type clk_low_ret_ff
-lib_model_name cell2 -port SAVE save_fifo -port NRESTORE nrestore_fifo
-port TVDD VDD -port VDD VDD_pri

The following maps “clk_low_ret_ff” the PA type CLRFF:

formalpro -b -UPF my_upf -paConfigCLRFF clk_low_ret_ff

FormalPro Reference Manual, 2018.198

Command Reference
-paLib<pa_type>

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Suppose that in a configuration file named “my_cfg_file”, the cell type attribute string
“clow_ret_ff” is assigned to a library cell “cell9”:

clow_ret_ff LIBCELL, cell9

The following maps “clk_low_ret_ff” the PA type CLRFF:

formalpro -b -paConfigfile my_cfg_file \
-paConfigCLRFF clow_ret_ff

-paLib<pa_type>
Design-specific

Alias: None

Maps cell_type, an attribute string provided by a Liberty or Verilog library, to a FormalPro PA
type.

In previous releases, this option was named pmLib<pm_type>.

Usage

• -paLibCHRFF cell_type

cell_type is a string assigned clock high retention flip flops.

• -paLibCLRFF cell_type

cell_type is a string assigned clock low retention flip flops.

• -paLibCFRFF cell_type

cell_type is a string assigned clock free retention flip flops.

• -paLibAHRLA cell_type

cell_type is a string assigned active high retention latches.

• -paLibALRLA cell_type

cell_type is a string assigned active low retention latches.

• -paLibAFRLA cell_type

cell_type is a string assigned to active free retention latches.

Description

Use this option to map a cell_type attribute (string) that is defined in a Liberty library to a
FormalPro PA type. The PA checker uses the attribute to identify and report on PA objects
generated in the compile phase.

Command Reference
-propagateDontCare

FormalPro Reference Manual, 2018.1 99
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Use this option when information in a Liberty library assigns an unexpected attribute string to a
given PA type.

By default, attribute strings are mapped to PA types in formalpro.ini. This option overrides the
mapping specified in formalpro.ini.

Supported Attributes

Examples

Suppose a Liberty library contains a definition of a clock low retention cell that assigns the cell
type attribute string “foo”:

formalpro -b -paLibCLRFF foo -slib gate_liberty.lib

-propagateDontCare
Design-specific

Alias: None

-Controls how FormalPro handles don’t care situations when compiling an RTL design.

Usage

• -propagateDontCare {all | none}

all — enables this functionality (default setting for design A).

none — disables this functionality (default setting for design B).

You can not specify the following combination:

formalpro \
-a -propagatedontcare none designfile \
-b -propagatedontcare all designfile

LIBERTY VERILOG

is_isolation _cell : true ; // pragma is_isolation _cell

is_level_shifter : true ; // pragma is_level_shifter

power_gating_cell : “type_1”; // pragma power_gating_cell : “type_1”

retention_cell : “type_1”; // pragma retention_cell : “type_1”

switch_cell_type : coarse_grain; // pragma switch_cell_type : coarse_grain

always_on : true ; // pragma always_on

FormalPro Reference Manual, 2018.1100

Command Reference
-partialSumCheck

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

This switch is used primarily for RTL-to-gate comparisons, so under normal circumstances, it is
only neccesary for the RTL design (design A). If you need to specify this switch for both
designs, you can include it in the -common scope.

An error is returned if you attempt to specify “none” for design A and “all” for design “B”.

GUI Access

Examples

formalpro -a ./rtl/design_a.v \
-propagatedontcare none \

-b ./gate/design_b.v

-partialSumCheck
Global

Alias: None

Enables the verification of DW02_multp and DW02_tree modules.

Usage

• -partialSumCheck — Enabled.

• -noPartialSumCheck — Disabled. Default.

Description

DW02_multp and DW02_tree modules contain partial sum outputs that cannot be verified by
directly comparing RTL models to the gates implementation. These modules can be verified by
adding the two partial sums together and checking the results between the two designs.

This option inserts an adder circuit directly into the DW02_multp or DW02_tree module after it
is read in and can be seen in the design schematic as highlighted in yellow below.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Propagate dontcare dropdown box

Action: Select argument.

Command Reference
-partialSumCheck

FormalPro Reference Manual, 2018.1 101
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The outputs of the modules are isolated from the downstream logic with latches that provide a
new cut point for verification. The addition of summing compare points (names) provides
verification that the RTL and the revised DW modules are equivalent.

The addition of latches breaks the DW module away from the following circuits and provides
primary inputs for the down-stream logic. Care is taken to propagate don't-care functions thru
these latches to simplify the verification process and improve performance.

GUI Access

Examples

formalpro -partialSumCheck
-a -rtl ./rtl/dw_uns_6x6.v -b ./gate/dw_uns_6x6.v

If an error is found in the gate-level implementation of the DW02_multp or DW02_tree,
FormalPro reports differences on the Sum block output nets, which are named "sumchk_<bit

Location: Options dialog box —

General pane > Compile tab >

Enable Partial Sum Check checkbox

Action: Use checkbox to enable or disable.

FormalPro Reference Manual, 2018.1102

Command Reference
-pruneMuxAheadOfLatch

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

number>". In the formalpro.cache/reports/detailedComparison.report file, they are reported as
in-equivalent targets:

5. solved: in-equivalent targets.

to76
\A.dw_uns_6x6.DUT_TREE.__mgc_fv_sum_checker.__mgc_fv_sumBlkBB.sumchk_11
\B.dw_uns_6x6.DUT_TREE.__mgc_fv_sum_checker.__mgc_fv_sumBlkBB.sumchk_11

to77
\A.dw_uns_6x6.DUT_TREE.__mgc_fv_sum_checker.__mgc_fv_sumBlkBB.sumchk_12
\B.dw_uns_6x6.DUT_TREE.__mgc_fv_sum_checker.__mgc_fv_sumBlkBB.sumchk_12

to78
\A.dw_uns_6x6.DUT_TREE.__mgc_fv_sum_checker.__mgc_fv_sumBlkBB.sumchk_13
\B.dw_uns_6x6.DUT_TREE.__mgc_fv_sum_checker.__mgc_fv_sumBlkBB.sumchk_13

The boundary latches that are inserted have the name of the output ports
embedded in the name. For example, for DW02_multp, which has ports "out0"
and "out1", the boundary latches are named:

""__mgc_fv_dl_out0_<bit_number>" and
""__mgc_fv_dl_out1_<bit_number>"

-pruneMuxAheadOfLatch
Design-specific

Alias: None

Removes redundant 2x1 multiplexers just ahead of latches during compilation.

Usage

• -pruneMuxAheadOfLatch — enables this functionality. Default.

• -nopruneMuxAheadOfLatch — disables this functionality.

GUI Access

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Prune mux ahead of latch check box

Action: Use check box to disable/enable.

Command Reference
-QQbarMerge

FormalPro Reference Manual, 2018.1 103
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following example disables the pruneMuxAheadOfLatch functionality:

formalpro -nopruneMuxAheadOfLatch \

-QQbarMerge
Global

Alias: None

Compiles library files containing two registers representing Q and Qbar ports so that the
registers are represented as a single DFF.

Usage

• -QQbarMerge — enables this functionality (default).

• -noQQbarMerge — disables this functionality.

Description

This switch allows you to compile your RTL design in the same way you synthesized your
design.

GUI Access

Examples

formalpro -qqbarmerge \
-a ./rtl/design_a.v -b ./gate/design_b.v

-QQbarSetResetMerge
Global

Alias: None

Compiles library files containing set- or reset-dominant registers defined with two UDPs so that
the registers are represented as a single DFF.

Location: Options dialog box —

General pane > Lib tab

Action: Enable: Select Merge Q Q-bar

Disable: Unselect Merge Q Q-bar

FormalPro Reference Manual, 2018.1104

Command Reference
-queueLicense

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -QQbarSetResetMerge — enables this functionality (default).

• -noQQbarSetResetMerge — disables this functionality.

Description

This switch allows you to compile your RTL design in the same way you synthesized your
design.

GUI Access

Examples

formalpro -qqbarsetresetmerge \
-a ./rtl/design_a.v -b ./gate/design_b.v

-queueLicense
Global

Alias: None

Enables/Disables the FLEXlm license queuing feature.

Usage

• -queueLicense — enables license queuing (default).

• -noqueueLicense — disables license queuing.

Description

By default, when you invoke FormalPro and a license is not immediately available, a request is
placed in a license queue. Once your request is in the license queue, FormalPro continuously
monitors the license server for an available license. When a license becomes available,
FormalPro automatically acquires it and continues executing. While in the queue, a pending
message displays. Enter Ctrl-c from a shell prompt or click Stop on the GUI toolbar to exit the
license queue at any time.

Note: A valid license must be available, or a license failure message displays.

Location: Options dialog box —

General pane > Lib tab

Action: Enable: Select Merge Q Q-bar set/reset

Disable: Unselect Merge Q Q-bar set/reset

Command Reference
-redundantRegMerge

FormalPro Reference Manual, 2018.1 105
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -queueLicense

-redundantRegMerge
Global

Alias: None

Compiles library files containing two UDPs that produce equal output so that the registers are
represented as a single DFF.

Usage

• -redundantRegMerge — enables this functionality (default).

• -noredundantRegMerge — disables this functionality.

Description

This switch allows you to compile your RTL design in the same way you synthesized your
design.

GUI Access

Examples

formalpro -redundantregmerge \
-a ./rtl/design_a.v -b ./gate/design_b.v

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Enable license queuing

Disable: Unselect Enable license queuing

Location: Options dialog box —

General pane > Lib tab

Action: Enable: Select Merge Redundant register

Disable: Unselect Merge Redundant register

FormalPro Reference Manual, 2018.1106

Command Reference
-removeIgnoredOutputs

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-removeIgnoredOutputs
Global

Alias: None

Instructs FormalPro to ignore registers that 1) lead directly to a primary output and 2) are part of
a net that you have constrained as ignorable.

Usage

• -removeIgnoredOutputs — enables this functionality.

• -noremoveIgnoredOutputs — disables this functionality (default).

Description

This switch is most useful when performing a pre- to post-scan verification.

For example, you should specify -removeIgnoredOutputs if you ignore the output of a scan
chain and your scan-insertion tool places a shadow latch at the end of the scan chain. This
prevents FormalPro from reporting an unmatched latch.

GUI Access

Examples

formalpro -removeignoredoutputs \
-a design_a.v \
-b design_b.v

-reportUnmatchedDiffs
Global

Alias: None

Reports fed-by-unmatched targets that cannot be proven equivalent as “differences” instead of
as removed targets.

Location: Options dialog box —

General pane > Match tab

Action: Enable: Select Remove ignored output

Disable: Unselect Remove ignored output

Command Reference
-reportUnmatchedDiffs

FormalPro Reference Manual, 2018.1 107
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -reportUnmatchedDiffs — reports targets as “differences” if they are fed by unmatched
inputs and if they cannot be proven equivalent.

• -noreportUnmatchedDiffs — removes targets if they cannot be proven equivalent and if
they are fed by unmatched inputs (default).

Description

Use this option to report targets as “differences” if they are fed by unmatched inputs and if they
cannot be proven equivalent. By default, fed-by-unmatched targets that cannot be proven
equivalent are “removed”.

Figure 2-2. Effects of -reportUnmatchedDiffs

Note
By default, FormalPro attempts to solve fed-by-unmatched targets. However, if you specify
-nosolveFedByUnmatched, no attempt is made to solve fed-by-unmatched targets. In this

case, all fed-by-unmatched targets are reported as “removed”.

GUI Access

Command-line only.

Examples

formalpro -reportUnmatchedDiff \
-a design_a.v \
-b design_b.v

FormalPro Reference Manual, 2018.1108

Command Reference
-reports

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-reports
Stand-alone

Alias: None

Completes the generation of reports if the run did not complete.

Usage

• -reports

Description

Completes the detailed comparison, comparison summary, and run statistics reports from a run
that was interrupted by pressing Ctrl-C during the solve stage.

GUI Access

Examples

formalpro -reports

-restart
Global

Alias: None

Restarts a verification run at a specified stage.

Usage

• -restart {a | b | match | constraint | solve | coverage}

a | b — restarts at the compile stage and compiles only the specified design-side, either
A or B. For example, -restart a compiles the A-side source and leaves the B-side
compiled from the previous run.

match — restarts at the beginning of the match stage. Use this option when you make
changes to the rule file or match file.

constraint — restarts at the beginning of the match stage or compile stage, depending on
the types of changes in the constraint file. Use this option when you make changes to the
constraint file.

Location: Reports > Generate reports menu item

Command Reference
-restart

FormalPro Reference Manual, 2018.1 109
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

solve — restarts at the beginning of the solve stage. When this option is used to rerun the
solve phase, the results of the previous solve phase are preserved and any additional
resolved targets are included in the results.

coverage — restarts an aborted or timed-out solve phase to complete the coverage
analysis. Use this when an aborted solve phase results in an incomplete or missing The
verification coverage report.

A restarted coverage function spends up to 60 seconds per unsolved target and can
timeout depending on the specified solve-time. Before restarting the coverage function,
determine the number of unsolved targets with the Detailed Comparison report, and set
the solve-time limits accordingly. See -solveTimeLimit and
-strategy.

Note
The -restart option leaves the existing cache in tact and any new output files created during
the run overwrite the corresponding files in the existing cache.

Description

To restart a previous run, add the -restart option to the command used for the initial invocation.

You can also use the -resume option to restart/resume a verification run in the solve stage. The
-restart solve and -resume options are similar except -restart solve restarts the solve stage at the
beginning sequence of the solve algorithms. The -resume restarts the solve phase at the point in
algorithm sequence where the run was stopped and progresses forward into the increasingly
intensive algorithms. In a design where simple targets may have been blocked by the presence
of large cone targets, like multipliers, you should use the -restart solve option. You can monitor
the progress of the solve stage with the -logLevel full option.

Caution
Use the appropriate restart option! FormalPro does not verify that modifications are
included in a restarted run. For example, if you modify a design source but use -restart

match instead of restarting at the compile stage, the run proceeds using the last completed
compilation. The modifications are not included in the run; no warning is issued.

GUI Access

Location:
Toolbar >

Action: 1. Select the stage from the dropdown box.

2. Click to execute the run.

FormalPro Reference Manual, 2018.1110

Command Reference
-resume

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following example uses the -restart and -matchfile switches with the initial invocation
command to add an explicit match file and restart the verification run at the match stage:

formalpro -restart match -matchfile match.cmd \
-a design_a.v \
-b design_b.v

-resume
Global

Alias: None

Resumes a verification run in the solve stage.

Usage

• -resume

Description

Depending on the verification run status, the -resume option reruns the solve stage or resumes
the solve stage where it left off. The -resume option can be used in any of the following ways to
resolve remaining verification targets:

• Repeat the solve phase — rerun the solve phase for a completed verification run. When
-resume is used to rerun the solve phase, the results of the previous solve phase are
preserved and any additional resolved targets are included in the results.

• Increase solve effort — in conjunction with the --strategy option, resume the solve
stage and increase the amount of solve effort used.

• Increase solve time — in conjunction with the --solveTimeLimit option, resume the
solve stage and increase the time allowed for the verification run.

You can also use the --restart option to restart/resume a verification run at the beginning of the
compile, match, or solve stage. The -restart solve and -resume options are similar except -
restart solve restarts the solve stage at the beginning sequence of the solve algorithms. The -
resume restarts the solve phase at the point in algorithm sequence where the run was stopped
and progresses forward into the increasingly intensive algorithms. In a design where simple
targets may have been blocked by the presence of large cone targets, like multipliers, you
should use the -restart solve option. You can monitor the progress of the solve stage with the -
logLevel full option.

Command Reference
-retime

FormalPro Reference Manual, 2018.1 111
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -strategy HIGH -resume
-a ./rtl/design_a.vhd \
-b ./gate/design_b.v

-retime
Global

Alias: None

Enables the retime solver named HAMBLE in the solve.log trace. This is activated when a
retimed register that is not paired A/B with another is detected in the fanin of another target.

Usage

• -retime — enables the retime solver

• -noRetime — disables the retime solver (default)

Description

The sequential solver engine is activated when -retime is true. The function relies on proper
matching to provide targets where the fanin includes non-equivalent or unmatched register pairs
and their cones. The targets being fed are matched properly and expected to be A/B functionally
equivalent, except when the fanin contains a retimed circuit. If a difference is detected in a
likely retimed fanin, the debugger highlights the retimed and non-retimed logic differences
without distinction. It might be difficult to decipher the differentiated output. To resolve the
correctness, use sequential simulation.

Simple retiming for speed and area can be solved for circuits and when datapaths are less than
20 bits wide.

Note
The initial application is for Precision FPGA compilation of Xilinx Vx5 devices including
inferred RAM and DSP elements. Please see -flow retime for this support.

Location:
Toolbar >

Action:
1. Click to execute the run.

FormalPro Reference Manual, 2018.1112

Command Reference
-rtl

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -retime {any FormalPro command follows}

-rtl
Design-specific

Alias: None

Specifies that the files within a design scope are RTL.

Usage

• -rtl

Description

FormalPro, by default, parses your design files to determine if they are RTL or gate-level. This
switch explicitly informs FormalPro that a design is RTL.

GUI Access

Examples

formalpro -a -rtl ./rtl/design_a.vhd \
 -b ./gate/design_b.v

-rtlIgnoreNoPathBBIns
Design-specific

Alias: None

Instructs FormalPro to ignore targets created for input ports for an empty module.

Usage

• -rtlIgnoreNoPathBBIns — enables this functionality (default for flow files for Cadence,
DC Ultra, Precision, and Oasys-RTL)

Location: Options dialog box —

A specific pane > Control tab >

B specific pane > Control tab >

Design level dropdown box

Action: Select rtl

Command Reference
-rtlIgnoreVHDLComponentError

FormalPro Reference Manual, 2018.1 113
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -NortlIgnoreNoPathBBIns — disables this functionality (default for gate to gate tests
and generic FormalPro command line)

Description

This option ignores the targets created for input ports for an empty module if there are no output
ports present for the same module. This avoids unmatched output (black box input) ports if the
empty port has been optimized in the reference design. Use this option to ignore simulation
related modules that are not synthesizable.

GUI Access

Examples

In the following example, FormalPro ignores the targets created for input ports for empty
modules in the reference design.

formalpro -a -rtlIgnoreNoPathBBIns ./rtl/design_a.vhd \
 -b ./gate/design_b.v

-rtlIgnoreVHDLComponentError
Global

Alias: None

Relaxes the VHDL language requirements for interfacing VHDL to a Verilog module as a
component.

Usage

• -rtlIgnoreVHDLComponentError — Uses relaxed VHDL language requirements.

• -noRtlIgnoreVHDLComponentError — Uses stricter VHDL language requirements.

Location: Options dialog box —

A specific pane > RTL tab

Ignore NoPath Blackbox Inputs check box

B specific pane > RTL tab

Ignore NoPath Blackbox Inputs check box

Action: Use check box to disable or enable.

FormalPro Reference Manual, 2018.1114

Command Reference
-rtlMemoryLimit

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

-rtlMemoryLimit
Design-specific

Alias: None

Specifies an upper limit for the size of a memory module for FormalPro to compile in RTL
designs.

Usage

• -rtlMemoryLimit [integer]

integer — The default value of integer is -1 (disable), which refers to the number of
memory elements in the array.

Description

This switch is a register count threshold, which automatically black boxes RTL modules that
FormalPro determines to be memory modules. Memories that are greater than the integer value
you specify will be made a black box by the RTL compiler.

GUI Access

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

RTL Compiler Settings panel

Action: Select Disable component parameter checks

Location: Options dialog box —

A specific pane > RTL tab

B specific pane > RTL tab

Size limit dropdown box

Action: A) Type value or

B) Select argument

Command Reference
-rtlSimWarnings

FormalPro Reference Manual, 2018.1 115
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Based on the following example, FormalPro will black box any memory modules that contain
more than 2048 memory elements. This would include, for example, a 128 x 32 memory, where
the address is 5 bits, which contains 4096 bits.

formalpro -a -rtlMemoryLimit 2048 ./rtl/design_a.vhd \
 -b ./gate/design_b.v

-rtlSimWarnings
Global

Alias: none

Promotes warnings related to simulation/synthesis miss-match due to RTL coding style. Copies
these warnings from the compileDetails log to the main log. Use this option to improve the
RTL.

Usage

• -rtlSimWarnings — Promotes warnings.

• -noRtlSimWarnings — Does not promote warnings.

GUI Access

-rtlTreatDeclAsassign
Design-specific

Alias: None

Treats all Verilog/SV variable declarations with non-static initial values as continuous
assignment statements during compilation.

Usage

• -rtlTreatDeclAsassign — enables this functionality.

• -nortlTreatDeclAsassign — disables this functionality. Default.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

RTL Compiler Settings panel

Action: Select Allow Simulation Warnings

FormalPro Reference Manual, 2018.1116

Command Reference
RTL Naming Control

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

This option is enabled in the Oasys-RTL flow for compatibility.

GUI Access

Examples

The following example disables the rtlTreatDeclAsassign functionality:

formalpro -nortlTreatDeclAsassign \

RTL Naming Control
Design-specific

Alias: None

Controls how FormalPro names objects during the compilation of your RTL design files.

Usage

FormalPro applies the following switches to specify a particular object is either a scalar or
vector register (DFF, latch, or tri-state).

• -dffInstScalarFormat “value” — default setting: %s_reg

• -dffInstVectorFormat “value” — default setting: %s_reg(%d)

• -dffInstMemoryFormat “value” — default setting: %s_reg(%d)(%d)

• -latchInstScalarFormat “value” — default setting: %s_lat

• -latchInstVectorFormat “value” — default setting: %s_lat(%d)

• -latchInstMemoryFormat “value” — default setting: %s_lat(%d)(%d)

FormalPro rarely applies the following switch, which is used in case two names are exactly the
same.

• -arrayNameFormat “value” — default setting: %s(%d)

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Treat declaration as assignment check box

Action: Use check box to disable/enable.

Command Reference
RTL Naming Control

FormalPro Reference Manual, 2018.1 117
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This switch applies to objects in an array. A possible change to value is: “%s[%d]”

• -recordNameFormat “value” — default setting: %s.%s

This switch controls the naming style for RTL objects related to records. A possible
change to value is “%s_%s”.

• -collisionNameFormat “value” — default setting: %s_%d

Syntax Requirements:

• Be sure to enclose value within quotation marks (“) when specifying any of these
switches on the command line.

• You should specify an occurrence of “%s” before you specify a “%d”. If you have to
swap the order, the value must appear similar to the following:

-dffInstVectorFormat "%2\$d_text_%1\$s"

which is similar in format to the fprintf UNIX command, where the %1 and %2 move
the relative variables to the desired places.

Description

By altering these switches, you can increase the efficiency of the Match stage, because
FormalPro will be able to complete more matches based on the canonical names. To do this
successfully, you must know the naming style for your synthesis tool.

GUI Access

Examples

Assume your netlist contains named register arrays in the following format (as would be seen in
the Match Tool):

f + \B.top.foo_reg[1_7]

noting your synthesis tool surrounds array values by square brackets ([]) and separates them by
an underscore (_). However, FormalPro compiles your RTL to appear as:

f + \A.top.foo(1)_reg(7)

FormalPro then compiles your RTL design to match the naming style in your netlist.

Location: Options dialog box —

A specific pane > RTL names tab

B specific pane > RTL names tab

FormalPro Reference Manual, 2018.1118

Command Reference
-ruleFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-ruleFile
Scope: Global

Alias: None

Specifies the location of a rule file containing implicit match rules.

Usage

• -ruleFile filename — specifies the location of the rule file.

filename — species a file pathname. Non-literal pathnames are relative to the current
directory.

Description

FormalPro automatically loads a default rule file that contains several pre-created rules that aid
in matching the comparison points between your designs. The -ruleFile option lets you override
the default rule file by specifying a different rule file.

Note
Before using this option you should have a full understanding of the operation and
interaction of the default rule file, rule sets, the -ruleFile option and the -addRule file option.

For this information, see the section titled “Rule Files” on page 207.

GUI Access

Examples

formalpro -rulefile ./setup/rule.cmd \
-a design_a.v \
-b design_b.v

-slib, -slibF
Scope: Design-specific

Alias: None

Specifies Synopsys Liberty technology library files to use for design compilation.

Location: Project tab > General tab > Match rules entry box

Action: Type the path to your rule file or use:

Command Reference
-simplifyPipelineRegs

FormalPro Reference Manual, 2018.1 119
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -slib libFile —specifies a Synopsys Liberty technology library.

libFile — a single library file. One libFile argument per switch.

• -slibF libList — specifies file containing a list of library files.

libList — a file containing a list of library files . One libList argument per switch.

Description

Use these options for specifying a library file (-slib) or a list of library files (-slibF) to use for
design compilation.

The format of libList file is shown in the following example:

commented line
./lib/syn_library_1.lib # a single Synopsys library file
./lib/syn_lib_*.lib # wildcards are allowed

You can use -slib and -slibF multiple times on the command line.

GUI Access

Examples

formalpro -a designA.v \
-b designB.v \
-common -slib ./syn_lib_1.lib

-simplifyPipelineRegs
Scope: global

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: Specifying a library file:

1. Type the path to your library or use:

2. Select slib from the dropdown menu to the left of the library.

Specifying a library file list:

1. Type the path to your file list or use:

2. Select slibF from the dropdown menu to the left of the file.

FormalPro Reference Manual, 2018.1120

Command Reference
-simplifyPipelineRegs

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alias: None

Eliminates false differences caused by offsetting inverters in pipelined registers.

Usage

• -simplifyPipelineRegs — enables this functionality.

• -nosimplifyPipelineRegs — disables this functionality (default).

Description

For the purpose of re-timing a design, inverters are sometimes added to a simple, straight-
through pipeline of registers. This can result in FormalPro reporting a difference even though
the additional inverters offset each other.

Figure 2-3 shows an example. The B-side schematic shows pipelined registers with two
inverters. The two inverters offset each other, so the overall logic of the pipeline is unchanged.
However, because the logic feeding the A-side register differs from the logic feeding the
matching B-side register, the equivalence check reports a difference.

If upon examining a reported difference you find this situation, enable the
-simplifyPipelineRegs switch.

Note
This switch resolves the problem by making the appropriate matched register pairs
transparent, so you will see a reduction in register count and target count.

Command Reference
-solveFedByUnmatched

FormalPro Reference Manual, 2018.1 121
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-3. Inverters added to change timing

GUI Access

Examples

formalpro -simplifyPipelineRegs -a design_a.v \
 -b design_b.v

-solveFedByUnmatched
Scope: Global

Alias: None

Instructs FormalPro to solve any targets that have an unmatched input.

Usage

• -solveFedByUnmatched — enables this functionality (default).

• -nosolveFedByUnmatched — disables this functionality.

Location: Options dialog box —

General pane > Options > Match tab

Action: Enable: Select Simplify pipeline registers

Disable: Unselect Simplify pipeline registers

FormalPro Reference Manual, 2018.1122

Command Reference
-solveOrder

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

When FormalPro encounters an unmatched input, it marks all targets in the fan-out of that input
as “fed by unmatched”. By default, FormalPro attempts to solve these targets, but you can
override this functionality by specifying -nosolveFedByUnmatched. In this case, the fed-by-
unmatched are removed.

GUI Access

Examples

formalpro -solvefedbyunmatched \
-a design_a.v \
-b design_b.v

-solveOrder
Scope: Global

Alias: None

Applies a control file for the solve engine sequence.

Usage

• -solveOrder controlFile — specifies a factory-provided control file.

Description

This switch applies a control file supplied by the factory to correct a solve issue for a specific
application. This is a control file for the solve engine sequence. If there is an issue with solving,
the factory can create a revision to this file, and it can be applied from the command line.

This is an expert level command, and there is no user-configurable text in the solveOrder files.

Examples

formalpro -solveOrder DSP2\

Location: Options dialog box —

General pane > Solve tab

Action: Enable: Select Solve targets fed by unmatched

Disable: Unselect Solve targets fed by unmatched

Command Reference
-solveTimeLimit

FormalPro Reference Manual, 2018.1 123
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-solveTimeLimit
Scope: Global

Alias: None

Sets a specific timeout value for the solve stage, overriding the value set by -strategy switch.

Usage

• -solveTimeLimit {<minutes> | <hours>:<minutes>}

Description

Specifies the maximum duration of the solve stage before timing out with unsolved targets.
Once the time limit is reached, the process continues for a short time until it reaches a
checkpoint, where it can exit cleanly. In rare cases, it may take thirty minutes or more to reach a
checkpoint.

The -solveTimeLimit switch overrides the time limit set by the --strategy switch. If you do not
specify -solveTimeLimit on the command line, (or if in the GUI you set the time limit to 0 or
infinity), the time limit reverts to setting defined by -strategy (default, four hours).

The -solveTimeLimit switch is useful in batch-mode scripts that invoke multiple FormalPro
runs, to ensure that a script run overnight does not get bogged down in the solve stages of one or
two designs.

GUI Access

Examples

The following examples show two different formats for setting the solve time limit to 1 hour
and 30 minutes:

formalpro -solvetimelimit 90 -a design_a.v -b design_b.v

formalpro -solvetimelimit 1:30 -a design_a.v -b design_b.v

Location: Options dialog box —

General pane > Solve tab

Action: Enable: Enter a non-zero value in text field to over-ride the time limit determined
by the --strategy setting.

Disable: Enter 0 or delete the value in the text entry field (this resets the text field
to “infinity” and removes -solveTimeLimit from the command line.

FormalPro Reference Manual, 2018.1124

Command Reference
-stopAfter

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-stopAfter
Scope: Global

Alias: None

Stops the run after the specified phase.

Usage

• -stopAfter {compile | match}

Description

Stops the run either after the compile phase (before the start of the match phase) or after the
match phase (before the start of the solve phase).

GUI Access

None.

Examples

formalpro -stopAfter compile\
-a design_a.v \
-b design_b.v

-stopOnBlackBox
Scope: Global

Alias: -sobb or -nosobb

Instructs FormalPro to end a run if it black boxes a module or entity that was not user-specified.

Usage

• -stopOnBlackBox — enables this functionality.

• -nostopOnBlackBox — disables this functionality (default).

Description

The FormalPro run ends after the compile stage when stopping a run due to a non-user-specified
black box, and the following message is issued:

ERROR: design <A|B> contains black boxes

Command Reference
-stopOnConfigError

FormalPro Reference Manual, 2018.1 125
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -sobb \
-a design_a.v \
-b design_b.v

-stopOnConfigError
Scope: Global

Alias: None

Stops the run when encountering an error in a configuration file.

Usage

• -stopOnConfigError — enables this functionality (default).

• -nostopOnConfigError — disables this functionality.

Description

StopOnConfigError stops the run at the end of the compilation phase when an error is
encountered in a configuration file. If -nostopOnConfigError is used, a warning is issued and
the run continues.

GUI Access

Examples

formalpro -nostoponconfigerror \
-a design_a.v \
-b design_b.v

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Stop on black box

Disable: Unselect Stop on black box

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Stop on config error

Disable: Unselect Stop on config error

FormalPro Reference Manual, 2018.1126

Command Reference
-stopOnConstraintError

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-stopOnConstraintError
Scope: Global

Alias: None

Ends the run when an error is encountered in the constraint file or explicit match file.

Usage

• -stopOnConstraintError — enables this functionality (default).

• -nostopOnConstraintError — disables this functionality.

Description

By default, errors in the constraint file or explicitly match file forces FormalPro to end after the
Match stage with an error statement. However, when you specify -nostopOnConstraintError,
FormalPro prints all the errors as warnings and continues beyond the matching step.

The following is an example of how the Warning might appear:

WARNING(file:./setup/constraints line:4) '\A.top.I2.counte_reg(0)' is not
a valid register name - command ignored.

GUI Access

Examples

formalpro -nostoponconstrainterror \
-a design_a.v \
-b design_b.v

-stopOnCycles
Scope: Global

Alias: -socyc

Instructs FormalPro to end the run during the solve stage when combinational cycles are
detected in the design.

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Stop on constraint error

Disable: Unselect Stop on constraint error

Command Reference
-stopOnDiff

FormalPro Reference Manual, 2018.1 127
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -stopOnCycles — enables this functionality.

• -nostopOnCycles — disables this functionality (default).

Description

FormalPro will stop the verification during the Solve stage (after completing the Isomorphism
engine) when an active cycle exists in your design.

This switch also disables the automatic solving of targets fed by combinational cycles, which is
controlled by --cycleSolve.

GUI Access

Examples

formalpro -stoponcycles \
-a design_a.v \
-b design_b.v

-stopOnDiff
Scope: Global

Alias: -sod

Instructs FormalPro to end a run if it encounters a specified number of differences.

Usage

• -stopOnDiff integer

integer — a number greater than or equal to one. The default value is “infinity”.

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Stop on cycles

Disable: Unselect Stop on cycles

FormalPro Reference Manual, 2018.1128

Command Reference
-stopOnMissing

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

FormalPro by default solves all targets regardless of the number of differences found during the
run. When you do specify this switch and FormalPro ends the run based on your setting, it
issues the following information at the end of the solve stage:

Notice: the number of differences detected has exceeded the maximum.

GUI Access

Examples

formalpro -stopondiff 15 \
-a design_a.v \
-b design_b.v

-stopOnMissing
Scope: Global

Alias: -somg or -nosomg

Instructs FormalPro to end a run if it encounters a missing library cell or design unit.

Usage

• -stopOnMissing — enables this functionality.

• -nostopOnMissing — disables this functionality (default).

Description

A FormalPro run ends after the compile stage when stopping a run due to a missing module, and
the following message is issued:

ERROR: There are modules referenced but not defined in design <A|B>

Location: Options dialog box —

General pane > Control tab

Action: Enable:

1. Select Stop on difference

2. Type value in dropdown box or use arrows to change

Disable: Unselect Stop on difference

Command Reference
-stopOnUnmatched

FormalPro Reference Manual, 2018.1 129
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -stopOnMissing \
-a design_a.v \
-b design_b.v

-stopOnUnmatched
Scope: Global

Alias: -soum or -nosoum

Instructs FormalPro to end the run if any comparison points remain unmatched after applying
all implicit match rules and explicit match statements.

Usage

• -stopOnUnmatched — enables this functionality.

• -nostopOnUnmatched — disables this functionality (default).

Description

A FormalPro run ends after the match stage when stopping a run due to an unmatched
comparison point, and the following message is issued:

ERROR: unmatched ports or registers remain

FormalPro will not stop the run when encountering a benign unmatched comparison point.

Your log and report files could report unmatched registers, even though the run did not stop, if
you specify --gatedClocks. The presence of this switch attempts to prune redundant registers
from your designs.

GUI Access

Location: Options dialog box —

General pane > Control tab

Action: Enable: Select Stop on missing

Disable: Unselect Stop on missing

Location: Options dialog box —

General pane > Control tab

FormalPro Reference Manual, 2018.1130

Command Reference
-strategy

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -soum \
-a design_a.v \
-b design_b.v

-strategy
Scope: Global

Alias: None

Specifies the effort expended in the solve stage before timing out.

Usage

• -strategy [low | medium | high | extreme]

low — 1 hr

medium — 4 hrs (default)

high — 12 hrs

extreme — until the solve-order sequence finishes. This is typically 26 to 36 solve
engine increments, which can be observed with the -logLevel full option.

Description

This switch allows you to specify one of four settings that control the duration of the solve stage
before timing out with unsolved targets. After a timeout, the solve status of all targets is logged
and available for viewing.

Unsolved targets can sometimes be resolved by changing the strategy setting and resuming the
run (see --resume).

To set a specific timeout value, see --solveTimeLimit.

GUI Access

Action: Enable: Select Stop on unmatched

Disable: Unselect Stop on unmatched

Location: Options dialog box —

General pane > Solve tab > Solve strategy dropdown box

Action: Select argument.

Command Reference
Suffix Control Switches (Design Files)

FormalPro Reference Manual, 2018.1 131
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -strategy high \
-a design_a.v \
-b design_b.v

Suffix Control Switches (Design Files)
Scope: Global

Alias: -svlog (-suffixVerilog), -svhdl (-suffixVHDL)

This group of switches allows you to specify the suffix styles used for your design files.

Usage

• -suffixVerilog extensionList — Specifies extensions used for Verilog design files.
Default extensions: v, .V, .vg, .VG, .vo, .VO, .vlg, .VLG, .verilog, .VERILOG, .vqo,
.VQO, .vm, .VM, .vqm, and .VQM

• -suffixSystemVerilog extensionList — Specifies extensions used for SystemVerilog
files. Default extensions: sv, SV

• -suffixVHDL extensionList — Specifies valid extensions for VHDL design files.
Default extensions: .vhd, .VHD, .hdl, .HDL, .vhdl, and .VHDL.

• -suffixEDIF extensionList — Specifies extensions used for EDIF files. Default
extensions: .edf, .edif, .EDF, .EDIF, .EDN, .edn

Where extensionList is a colon-delimited list of extensions.

Description

This group of switches allow you to override the default file extensions defined in the
formalpro.ini and used by the FormalPro when compiling design files.

For example, the default formalpro.ini defines sv and SV as SystemVerilog suffixes. Using the
-suffixSystemVerilog switch you can override the SystemVerilog suffixes defined in
formalpro.ini, replacing them with the suffixes in extensionList.

Specify these switches in the global section of the command line. They apply to all design files
(but not library files) the A- and B design.

Compressed Design Files

FormalPro supports compressed design files. The file must be a single compressed file (not
multiple files combined during compression). It must be Verilog netlist — any file that needs to
be processed by the RTL compiler cannot be in compressed format.

FormalPro Reference Manual, 2018.1132

Command Reference
Suffix Control Switches (Library Files)

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The supported compression types are:

Compressed files must use one of the suffixes listed above. The compression suffix follows the
language suffix. For example, a Verilog netlist file compressed by gzip might look like this:
filename.v.gz.

GUI Access

Examples

Assume that at your site you use the extension .vg for Verilog designs, in addition to .v and .V,
which are the defaults. Given this assumption, you would use the -suffixVerilog switch as
follows:

formalpro -suffixverilog .v:.V:.vg \
-a design_a.v \
-b design_b.v

Be sure that you specify all possible extensions as an argument to the switch, because all default
extensions replaced by your entry.

You can use wildcards in your suffix arguments, as shown in the following example for -
suffixVHDL:

formalpro -suffixvhdl .vhd:.vhdl:.vhd_*:.vhdl_* \
-a design_a.vhd \
-b design_b.vhd

This is useful if your files are subject to version control.

Suffix Control Switches (Library Files)
Scope: Global

.gz Unix/PC gzip

.bz2 Unix bzip2

.Z Unix compress

.ZIP .zip Unix zip; PC WinZip, PKzip; Windows OS file compress

Location: Options dialog box —

General pane > Compile tab

Action: Type in space-separated list of allowable suffixes.

Command Reference
Suffix Control Switches (Library Files)

FormalPro Reference Manual, 2018.1 133
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alias: None

Specifies suffix styles used for library files.

Usage

• -suffixVlogLib extensionList — Specifies extensions used for Verilog library files.
Default extensions: .v, .V, .vg, .VG, .vo, and .VO

• -suffixSystemVlogLib extensionList — Specifies extensions used for System Verilog
library files. Default extensions: .sv and .SV.

• -suffixDftLib extensionList — Specifies extensions used for Mentor Graphics FastScan
ATPG files. Default extensions: .atpglib,. ATPGLIB, .lib and LIB

• -suffixSynLib extensionList — Specifies extensions used for Synopsys Liberty files.
Default extensions: .slib, .SLIB, .lib and .LIB

Where extensionList is a colon-separated list of extensions.

Description

This group of switches allow you to override the default file extensions defined in the
formalpro.ini and used by FormalPro when compiling a library file.

For example, the default formalpro.ini defines .v and .V as SystemVerilog suffixes. Using the
-suffixVlogLib switch you can override the Verilog suffixes defined in formalpro.ini, replacing
them with the suffixes in extensionList.

The switches go in the global section of the command line and they apply to all appropriate files
specified in the command line’s -a, -b, and -common scope.

Compressed Design Files

FormalPro supports compressed library files. The library must be a single compressed file (not
multiple files combined during compression). It must be in Verilog or Liberty format. Any file
that needs to be processed by the RTL compiler cannot be in compressed format.

The supported compression types are:

The compressed file must use one of the suffixes listed above. The compression suffix follows
the language suffix. For example, a Verilog library file compressed by gzip might look like this:
filename.v.gz.

.gz Unix/PC gzip

.bz2 Unix bzip2

.Z Unix compress

.ZIP .zip Unix zip; PC WinZip, PKzip; Windows OS file compress

FormalPro Reference Manual, 2018.1134

Command Reference
-suppress

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

Assume that you use the extension .vg for Verilog libraries, in addition to .v and .V, which are
the defaults. Given this assumption, you would use the -suffixVlogLib switch as follows:

formalpro -suffixvloglib .v:.V:.vg \
-a design_a.v \
-b design_b.v -v lib.vg

Be sure that you specify all possible extensions as an argument to the switch, because the
defaults will be overwritten by your entry.

You can also use wildcards in your suffix arguments, as shown in the following example for
-suffixDftLib:

formalpro -suffixdftlib .atpglib:.atpglib_*: \
-a design_a.v \
-b design_b.v -alib lib.atpglib

This is useful if your files are subject to version control.

-suppress
Scope: Global

Alias: None

Suppresses specified error, warning, and information messages issued during the translate and
compile phase.

Usage

• -suppress filename

filename — error configuration file that specifies the types of errors to suppress. Use a
copy of the directives in formalpro.errcfg as a template to create this file.

Location: Options dialog box —

Project

General pane > Lib tab

Action: Type a space-separated list of allowable suffixes.

Command Reference
-sv

FormalPro Reference Manual, 2018.1 135
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

By default, message suppression is based on the directives defined in $FORMALPRO_HOME/
lib/formalpro.errcfg. If you use the -suppress option, the directives in the specified error
configuration file are used instead.

To avoid the display of many undesired messages, you should start with a copy of the message
directives in the formalpro.errcfg file, and edit it as needed to create a custom error
configuration file.

Syntax for defining directives can be found in the comments of the formalpro.errcfg file. Note
that the directive Usage requires the identification number included in the error/warning/
information message when it displays.

GUI Access

Examples

The following example specifies the custom error configuration file suppress.errcfg to filter
messages:

formalpro -suppress ./control/suppress.errcfg -a rtl/design_a.v \
-b gate/design_b.v

-sv
Scope: Design-specific

Alias: sv2009

Compiles files with SystemVerilog file extensions as SystemVerilog 2009 files.

Usage

• -sv filename [filename]...

filename — Specifies a SystemVerilog file.

Description

This switch must precede design files to which it applies. This switch applies to all files within a
design scope (-a, -b, or -common) including files specified in a file list or by any other means.
See the examples below.

Location: Project tab > General tab > Suppress File entry box

Action: Type the path to the custom error configuration file

FormalPro Reference Manual, 2018.1136

Command Reference
-sv2005

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default (when FormalPro is first installed), all files with the extension sv or SV are compiled
as SystemVerilog files based on the settings in formalpro.ini. This behavior can be changed by
changing the formalpro.ini settings or using one of the suffix control switches.

GUI Access

Examples

In the following example, file1.v on the A-side and foo.v on the B-side are treated as Verilog;
file2.sv, file3.sv, and all similar files in filelist are treated as SystemVerilog 2009:

formalpro -a file1.v -sv file2.sv file3.sv -fl filelist -b foo.v

-sv2005
Scope: Design-specific

Alias: sv2005

Compiles files with SystemVerilog file extensions as SystemVerilog 2005 files.

Usage

• -sv filename [filename]...

filename — Specifies a SystemVerilog file.

Description

This switch must precede design files to which it applies. This switch applies to all files within a
design scope (-a, -b, or -common) including files specified in a file list or by any other means.
See the examples below.

By default (when FormalPro is first installed), all files with the extension sv or SV are compiled
as SystemVerilog files based on the settings in formalpro.ini. This behavior can be changed by
changing the formalpro.ini settings or using one of the suffix control switches.

GUI Access

Location: Project tab > A tab

Project tab > B tab

Action: Select -sv from the dropdown menu.

Location: Project tab > A tab

Project tab > B tab

Command Reference
-sv2009

FormalPro Reference Manual, 2018.1 137
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

In the following example, file1.v on the A-side and foo.v on the B-side are treated as Verilog;
file2.sv, file3.sv, and all similar files in filelist are treated as SystemVerilog 2005:

formalpro -a file1.v -sv file2.sv file3.sv -fl filelist -b foo.v

-sv2009
Scope: Design-specific

Alias: none

Compiles files with SystemVerilog file extensions as SystemVerilog 2009 files.

Usage

• -sv2009 filename [filename]...

filename — Specifies a SystemVerilog file.

Description

This switch must precede design files to which it applies. This switch applies to all files within a
design scope (-a, -b, or -common) including files specified in a file list or by any other means.
See the examples below.

By default (when FormalPro is first installed), all files with the extension sv or SV are compiled
as SystemVerilog files based on the settings in formalpro.ini. This behavior can be changed by
changing the formalpro.ini settings or using one of the suffix control switches.

GUI Access

Examples

In the following example, file1.v on the A-side and foo.v on the B-side are treated as Verilog;
file2.sv, file3.sv, and all Verilog files in filelist are treated as SystemVerilog 2009:

formalpro -a file1.v -sv2009 file2.sv file3.sv -fl filelist -b foo.v

Action: Select -sv from the dropdown menu.

Location: Project tab > A tab

Project tab > B tab

Action: Select -sv2009 from the dropdown menu.

FormalPro Reference Manual, 2018.1138

Command Reference
-svFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-svFile
Scope: Design-specific

Alias: sv2009File

Compiles the specified file as SystemVerilog 2009.

Usage

• -svFile filename

filename — Specifies a SystemVerilog file.

Description

Use this switch to compile the specified file as a SystemVerilog file, regardless of the file
extension. The switch applies only to the specified file.

GUI Access

Examples

In the following example, all files are treated as Verilog except for file2.v, which is treated as
SystemVerilog 2009.

formalpro -a file1.v -svfile file2.v file3.v -fl filelist -b foo.v

-sv2005File
Scope: Design-specific

Alias: sv2005File

Compiles the specified file as SystemVerilog 2005.

Usage

• -svFile filename

filename — Specifies a SystemVerilog file.

Location: Project tab > A tab

Project tab > B tab

Action: Select -svFile from the dropdown menu to the left of the specific design file.

Command Reference
-sv2009File

FormalPro Reference Manual, 2018.1 139
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

Use this switch to compile the specified file as a SystemVerilog file, regardless of the file
extension. The switch applies only to the specified file.

GUI Access

Examples

In the following example, all files are treated as Verilog except for file2.v, which is treated as
SystemVerilog 2005.

formalpro -a file1.v -svfile file2.v file3.v -fl filelist -b foo.v

-sv2009File
Scope: Design-specific

Alias: none

Compiles a specified file as a SystemVerilog 2009 file.

Usage

• -sv2009File filename

filename — Specifies a SystemVerilog file.

Description

Use this switch to compile the specified file as a SystemVerilog file, regardless of the file
extension. The switch applies only to the specified file.

GUI Access

Location: Project tab > A tab

Project tab > B tab

Action: Select -svFile from the dropdown menu to the left of the specific design file.

Location: Project tab > A tab

Project tab > B tab

Action: Select -sv2009File from the dropdown menu to the left of the specific design
file.

FormalPro Reference Manual, 2018.1140

Command Reference
-synopsysStrictArrayAddress

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

In the following example, all files are treated as Verilog except for file2.v, which is treated as
SystemVerilog 2009.

formalpro -a file1.v -sv2009file file2.v file3.v -fl filelist -b foo.v

-synopsysStrictArrayAddress
Scope: Design-specific

Alias: none

Enables array addressing compatible with Synopsys® Design Compiler® version 2006.06-SP1
and later.

Usage

• -nosynopsysStrictArrayAddress — handles address vectors consistent with pre-
2006.06-SP1 versions of Design Compiler. Defaults to this behavior for Precision and
Synplify flows using FVI and VIF.

• -synopsysStrictArrayAddress — handles address vectors consistent with 2006.06-SP1
and later versions of Design Compiler. Defaults to this behavior for Synopsys DC,
Oasys RT, Cadence RTLC, Xilinx ISE, and Altera Quartus flows.

Description

Use this switch when comparing RTL to netlists that were compiled by Synopsys Design
Compiler version 2006.06-SP1 and later. In pre-2006.06-SP1 versions, Design Compiler
ignored the extra bits of an address vector that was larger than necessary for indexing the array,
behavior consistent with the default behavior of FormalPro.

In current versions of Design Compiler, the extra bits are decoded (thus avoiding wrap-around
read access). If this situation exists (and you have not specified this switch), FormalPro reports
a difference for the associated target. The problem does not occur if the RTL code uses the
correct-sized address vector.

Examples

formalpro -a -synopsysStrictArrayAddress file.v -b netlist.v -y library

GUI Access

Location: Options dialog box —

A specific pane > RTL tab

B specific pane > RTL tab

Command Reference
-tlist

FormalPro Reference Manual, 2018.1 141
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-tlist
Scope: Global

Alias: None

The -tlist option enables the user to limit ECO analysis and patch generation to a subset of
failing targets in the cache.

Usage

• -tlist targetListFile — Optional option specifying a file of targets that is used for ECO
and difference region analysis.

Description

Optional option and string value that specifies a text file containing a list of targets to load for
ECO analysis. The file specifies a list of target numbers as follows:

to9
tf27d
tf36q

To determine the targets for this file, you must run the FormalPro debugger on the complete set
of targets and perform some initial analysis to determine which targets you want to load. Then
create a targetListFile and restart the FormalPro tool loading the targetListFile.

GUI Access

Debugger tab > Target list entry box

Related Topics

-eco

-treatDivisionAsShift
Scope: Design-specific

Alias: None

Alters the behavior of FormalPro when compiling VHDL RTL code implementing the division
of negative integers.

Action: Enable: select Synopsis strict array addressing convention

Disable: deselect Synopsis strict array addressing convention

FormalPro Reference Manual, 2018.1142

Command Reference
-upf

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage

• -notreatDivisionAsShift — performs negative integer divisions according to the VHDL
Language Reference Manual (default).

• -treatDivisionAsShift — performs negative integer divisions to mimic the behavior of
Synopsys Design Compiler.

Description

When comparing a VHDL RTL design against a gate-level design synthesized with Synopsys
Design Compiler, you may need to specify -treatDivisionAsShift to allow for a difference
between how a simulator and Design Compiler handles negative integer division.

FormalPro issues a warning when compiling a negative-integer division and
-treatDivisionAsShift is specified.

GUI Access

Examples

formalpro -a -treatdivisionasshift ./rtl/design_a.vhd \
 -b ./gate/design_b.v

-upf
Scope: Design-specific

Alias: None

Specifies a UPF-compliant file containing power aware (PA) instructions for FormalPro
compilation.

Usage

• -upf upf_file

upf_file — Specifies a file containing UPF-compliant syntax.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Action: Enable: Select Treat division as shift

Disable: Unselect Treat division as shift

Command Reference
-useAliasPhases

FormalPro Reference Manual, 2018.1 143
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

This option provides a way to pass UPF-compliant instructions to the FormalPro compilation.
The compiler uses the information to generate the PA attributes required to produce a PA check
report (see -PACheck).

A UPF-compliant file can be used in place of a legacy ModelSim PCF file.

UPF-compliant instructions can be applied to the compilation of RTL-level designs or gate-
level designs. When providing UPF instructions for a gate-level compilation, be sure not to
duplicate PA instructions that have already been implemented in the design by the synthesis tool
that generated the netlist.

Examples

The -UPF option is design-specific and can be used more than once for each design side. For
example:

-a -UPF file1.upf -UPF file2.upf
-b -upf test.upf

File1 and file2 are read in sequentially.

-useAliasPhases
Scope: Global

Alias: None

Performs complement matching when register aliases share the same name, but different
phases.

Usage

• -useAliasPhases

Description

This switch instructs FormalPro to determine if a match can be made between alias names of
different phases. If a match cannot be made, between the canonical names. This is illustrated in
the following example, which can be seen in the Match Tool:

F \A.reg0
+ \A.abc.def

F \B.reg1
- \B.abc.def

FormalPro Reference Manual, 2018.1144

Command Reference
-v

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In this case, FormalPro would not initially match \A.reg0 to \B.reg1 because their names are not
the same, but upon analysis of their aliases, a complement match would occur because they
have aliases with the same name, but only the phases (+ and -) are different.

GUI Access

Examples

formalpro -usealiasphases -a design_a.v -b design_b.v

-v
Scope: Design-specific

Alias: None

Specifies a single technology library file.

Usage

• -v file — specifies the file location of a technology library. You can specify this switch
any number of times on one command line.

Description

The library resolution scheme follows the behavior of Verilog-XL. For more information, see
“Verilog Library Resolution” in the FormalPro User’s Manual.

GUI Access

Location: Options dialog box —

General pane > Match tab

Action: Enable: Select Use alias phases

Disable: Unselect Use alias phases

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: Type the path to your library or use:

Select v from the dropdown menu to the left of the library.

Command Reference
-verifyTristate

FormalPro Reference Manual, 2018.1 145
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

formalpro -a ./rtl/designa.v \
-b ./gate/designb.v -v ./lib/library.v

-verifyTristate
Scope: Design-specific

Alias: None

Generates binary logic that models the Z-state of a tri-state buffer.

Usage

• -verifyTristate (default)

• -noverifyTristate

Description

When verifyTristate is enabled a special primary input port (mgc_fv_globalz) is generated to
represent the Z-state in the logic. The globalz input participates in every instance where a tri-
state buffer is modeled. To reduce clutter the globalz input is not displayed in reports and
schematics. But if the globalz input feeds a target in which a difference is found, it is displayed
in the debugger’s schematics and reports so you can determine if a differing Z-state is the cause
of the problem.

FormalPro Reference Manual, 2018.1146

Command Reference
-verilogFile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-4. Two Modes of bufif Modeling

-verilogFile
Scope: Design-specific

Alias: none

Compiles a specified file as Verilog

Usage

• -verilogFile file

where file is a valid Verilog file.

Description

Use this switch to tell the FormalPro RTL compiler to treat the specified file as a Verilog file,
regardless of the file extension. The switch applies only to the specified file.

GUI Access

Location: Project tab > A tab

Project tab > B tab

Command Reference
-version

FormalPro Reference Manual, 2018.1 147
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-version
Scope: Stand-alone

Alias: None

Displays FormalPro version information.

Usage

• -version

Description

Displays the version of the tool at the top of the FormalPro log files and in the lower right corner
of the GUI.

GUI Access

Examples

formalpro -version

-vcsCompat
Scope: Design-specific

Alias: none

Reduces FormalPro RTL compiler errors for VCS-compliant SystemVerilog files.

Usage

• -vcsCompat

Description

The FormalPro compiler adheres more stringently to the SystemVerilog LRM than the Synopsis
VCS compiler, which may result in errors during compilation. By default, Precision returns

Action: Select -verilogFile from the dropdown menu to the left of the specific
design file.

Location: Help > About menu item

FormalPro Reference Manual, 2018.1148

Command Reference
-vcsCompat

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

errors for any non-LRM compliant usages. To minimize incompatibilities, this switch affects
the following constructs:

• Named port connection for bit/part select port is allowed. For example:

module top (i1, i2[2:0], i3, out1, out2);
input i1, i3;
input [2:0] i2;
output out1, out2;
bottom1 inst1 (.in1(i1), .in2(i2), .in3(i3), .o1(out1));
bottom2 inst2 (.in1(i1), .in2(i2[2]), .in3(i3), .o1(out2));
endmodule // top

module bottom1 (in1, in2[2:0], in3, o1, o2);
input in1,in3;
input [3:0] in2;
output o1,o2;
endmodule // bottom

module bottom2 (in1, in2[2], in3, o1, o2);
input in1,in3;
input [3:0] in2;
output o1,o2;
endmodule

• System task call inside a constant function call is allowed. For example:

module top;
function integer f(input integer x);
begin
$fflushall();
f = x;
end
endfunction
reg [f(1):1] r;
endmodule

• Macro name starting with a number is allowed. For example:

module test;
reg a;
`ifdef 11
reg b , c, d;
wire e, f;
`endif
assign e = (b + c + d);
endmodule

Command Reference
-vcsCompat

FormalPro Reference Manual, 2018.1 149
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Re-declaration of ANSI style port declaration with explicit data type in non-ANSI is
allowed. For example:

module bug(
input clk,
input [31:0] in,
output [31:0] out
);
reg [31:0] out;
endmodule

• A function with no input port declaration. This LRM-compliant construct is not allowed.
For example:

Module top;
function SIP;
endfunction
endmodule

• Reduction nand (~&) and reduction nor (~|) unary operators used as binary operators is
allowed. For example:

out1 = a ~& b;
out2 = (rv_wr0 ~| rv_wr1);

• Verilog whole memory access in a system task/function is allowed. For example:

module top;
reg [31:0] data [0:1];
integer int, status;
initial begin
$spi4_dump (int, data, status);
end
endmodule

• In a Verilog non-ANSI style port declaration, the explicit data type can be declared
before its direction. For example:

module flop(ck,rst,din,si,se,so);
input ck,rst;
input si, se;
input din;
wire so; // (1) type declaration before
output so; //(1) port declaration later
endmodule

• Usage of an un-sized constant in concatenation is allowed with a warning. For example:

module top;
integer x;
initial begin
x = {1};
end
endmodule

FormalPro Reference Manual, 2018.1150

Command Reference
-vcsCompat

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Constants connected on output and inout ports on the instance are allowed. For example:

module top(in1,in2,out);
input [7:0] in1,in2;
output reg [7:0]out;
middle m1 (in1,in2,2); //constant connected at output port
endmodule
module middle(in1,in2,out);
input [7:0] in1,in2;
output reg [7:0]out;
always @*
begin
out = in1;
end
endmodule

• 2-state data type for a net is allowed. For example:

module test15(in1,in2,out);
input [7:0] in1,in2;
output wire bit [7:0]out; //2 state data type bit used for net
declaration
assign out = in1;
endmodule

• Delay assignment in always_ff block is allowed. For example:

module top(clk,in1,in2,out);
input clk;
input [7:0] in1,in2;
output reg [7:0]out;
always_ff @(posedge clk)
begin
#2 out = in1;
end
endmodule

GUI Access

Examples

formalpro -mp 2 -a test.sv mydff.v -vcscompat -b netlist.v

Location: Options dialog box —

A specific pane > RTL tab

B specific pane > RTL tab

Action: Enable: select VCS compatibility

Disable: deselect VCS compatibility

Command Reference
-vhdl2008File

FormalPro Reference Manual, 2018.1 151
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-vhdl2008File
Scope: Design-specific

Alias: none

Compiles a specified file as VHDL 2008.

Usage

• -vhdl2008File filename

where filename specifies the name of a VHDL file.

Description

This command compiles the specified file as VHDL 2008, regardless of the file extension.

GUI Access

Examples

In the following example design A consists of 2 design files compiled as VHDL 93 (default)
format and design B has one file with a non-standard VHDL suffix compiled as VHDL 2008
format.

formalpro -a design_1a.vhd design_1b.vhd -b -vhdl2008File design_2.av

-vhdlFile
Scope: Design-specific

Alias: none

Compiles a specified file as VHDL.

Usage

• -vhdlFile filename

where filename specifies the name of a valid VHDL file.

Location: Project tab > A tab

Project tab > B tab

Action: Select -vhdl2008File from the dropdown menu to the left of the specific
design file.

FormalPro Reference Manual, 2018.1152

Command Reference
-vlibF

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description

This command compiles the specified file as VHDL, regardless of the file extension. The file is
compiled in the VHDL format specfied with the -87 | -93 | -2008 switches. VHDL 93 is the
default.

GUI Access

Examples

In the following example design A consists of 2 design files compiled as VHDL 2008 format
and design B has one file with a non-standard VHDL suffix compiled as VHDL 93 format:

formalpro -a -2008 design_1a.vhd design_1b.vhd -b -93 -vhdlFile
design_2.av

-vlibF
Scope: Design-specific

Alias: None

Specifies a file listing Verilog technology library files.

Usage

• -vlibF fileList — specifies the location of a file list.

fileList — the location of the file. One fileList argument per switch.

Description

You can specify this switch any number of times on the command line.

The format of the file specified by fileList is shown in the following example:

commented line
./lib/ver_library_1.v # a single Verilog library file
./lib/ver_library_*.v # wildcards are allowed

Location: Project tab > A tab

Project tab > B tab

Action: Select -vhdlFile from the dropdown menu to the left of the specific design file.

Command Reference
-vlog95 | -vlog01

FormalPro Reference Manual, 2018.1 153
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -a designA.v -b designB.v
-common -vlibF ./verilog.fl

-vlog95 | -vlog01
Scope: Design-specific

Alias: None

Specifies that a design side (A or B) is written with either Verilog 95 or Verilog 2001 standards.

Usage

• -vlog95 — specifies Verilog 95.

• -vlog01 — specifies Verilog 2001 (default).

Description

You should specify -vlog95 when you are using the FormalPro RTL compiler, your design does
not use the Verilog 2001 standard, and your design uses Verilog 2001 keywords, such as config,
cell, or library.

GUI Access

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: Type the path to your filelist or use:

Select vlibF from the dropdown menu to the left of the library.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Action: Enable: Select either Verilog 95 or Verilog 01

FormalPro Reference Manual, 2018.1154

Command Reference
-vmapfile

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following example shows a case where your RTL design is not written with Verilog 2001
and you are using the RTL compiler.

formalpro -a -vlog95 ./rtl/designA.v
-b ./gate/designB.v

-vmapfile
Scope: Design-specific

Alias: None

Maps logical libraries within the design to a logical library of a different name.

Usage

• -vmapfile filename

filename — contains the mapping information, and is formatted as follows:

commented line
vmap <from_library> <to_library>

Description

Using this switch allows you to control VHDL logical library mapping with one switch, rather
than having to use multiple -work switches on the command line.

GUI Access

Examples

Refer to the section “Specifying VHDL Library Files” in the FormalPro User’s Manual for an
example on how to use this switch.

Location: Options dialog box —

A specific pane > RTL tab >

B specific pane > RTL tab >

Vmap file entry box

Action: Type the path to your vmap file or use:

Command Reference
-work

FormalPro Reference Manual, 2018.1 155
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-work
Scope: Design-specific

Alias: -lib, -library

Maps VHDL, Verilog, and SystemVerilog files to a specified logical library.

Usage

• -work libraryName {[fileType] filePathname... | -fl fileList}

libraryName — Specifies the name of a logical library. The default value is work.

fileType — Optional switch that specifies the language type for the file using one of the
following switches: -vhdl2008File filename, -verilogFile filename, or -sv2009 filename

filePathname — repeatable argument that specifies the pathname of a file to map to the
specified library.

-fl fileList — maps all files listed in fileList to the libraryName.

Description

When your design or library files are dependent on logical libraries other than “work”, you must
specify the dependencies on the command line using this switch.

GUI Access

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: 1. Type the name of the library on a new line above the files
associated with the library.

2. Select work from the dropdown menu to the left of the library
name.

FormalPro Reference Manual, 2018.1156

Command Reference
-y

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Example 1

The following example maps the abc.vhd and def.vhd files to a logical library named shared and
maps the top.vhd file to a logical library named work:

formalpro -a -work share \
./rtl/abc.vhd \
./rtl/def.vhd \
-work work \
./rtl/top.vhd \

 -b ./gate/design_b.v

Example 2

The following example maps a VHDL file with a non-standard file extension (VhdlFile.vdl) and
VhdlFile.vhd to a logical library named myworklib:

formalpro -a -work myworklib
-vhdlFile ../rtl/VhdlFile.vdl \
../rtl/myVhdlFile.vhd \

-b ./gate/design_b.v

Example 3

The following example maps all the VHDL files listed in the fileList file to a logical library
named myworklib:

formalpro -a -work myworklib
-fl fileList \

 -b ./gate/design_b.v

fileList contents:

./rtl/abc.vhd

./rtl/def.vhd

./rtl/top.vhd

-y
Scope: Design-specific

Alias: None

Specifies directories containing technology library files.

Usage

• -y directory —specifies the directory location of technology libraries.

Description

The library resolution scheme follows the behavior of Verilog-XL. For more information, see
“Verilog Library Resolution” in the FormalPro User’s Manual.

Command Reference
-ylibF

FormalPro Reference Manual, 2018.1 157
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -a ./rtl/designA.v \
-b ./gate/designB.v -y ./lib/library/

-ylibF
Scope: Design-specific

Alias: None

Specifies a file that lists one or more directories containing Verilog technology library files.

Usage

• -ylibF dirList — Species a file containing a list of one or more directories. One dirList
file per switch.

Description

This option provides a way to specify one or more directories that contain Verilog library files
to use for design compilation. dirList itself is a file that contains a list of one or more directories
in which the library files reside.

You can -ylibF multiple times on the command line.

The format of the file specified by dirList is shown in the following example:

commented line
./lib/ver_library_1 # a directory of Verilog libraries
./lib/ver_lib_* # wildcards are allowed

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: Type the path to your library directory or use:

Select y from the dropdown menu to the left of the library.

FormalPro Reference Manual, 2018.1158

Command Reference
-ylibF

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

GUI Access

Examples

formalpro -a designA.v -b designB.v \
-common -ylibF ./list_of_libs.ylibs

Location: Project tab > A tab

Project tab > B tab

Project tab > Common tab

Action: Type the path to your filelist or use:

Select ylibF from the dropdown menu to the left of the library.

FormalPro Reference Manual, 2018.1 159
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 3
FPGA Tools

FormalPro provides an FPGA-only version of the formalpro command: formalpro_fpga.
formalpro_fpga enables you to run an FPGA flow with reduced cost licenses including two
utilities that generate the set-up files required by FormalPro for post-synthesis equivalence
checking.

Table 3-1. FPGA Tools and Licenses

Command Description/License

formalpro_fpga FormalPro (GUI and command-line functionality) for FPGA
designs. Required license: formalpro_fpga or formalpro.

transFVI Utility the automates post-synthesis equivalency checking by
translating a Precision FVI file into the FormalPro set-up files.

Required license: any.

transVIF Utility that automates post-synthesis equivalency checking by
translating a SynplifyPro VIF file into FormalPro set-up files.

Required license: any.

FormalPro Reference Manual, 2018.1160

FPGA Tools
formalpro_fpga

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

formalpro_fpga
Invokes FormalPro for FPGA designs only. All FormalPro GUI and all command-line switches
are available.

Usage

formalpro_fpga -fpga {altera | actel | xilinx} {-fvi file.fvi | -wsp file.wsp | formalpro_options}

Arguments

• -fpga {altera | actel | xilinx}

Specifies the FPGA vendor. If excluded or if the specified vendor does not match the actual
vendor, FormalPro exits. Can be omitted when starting the FormalPro GUI (-gui), but the
vendor must be specified from the GUI before starting the verification run.

• -fvi file.fvi

Runs transFVI on the specified fvi file, then starts the formalpro run using the command-
line options in the WSP file generated by transFVI.

• -wsp file.wsp

Runs FormalPro using the command-line options in the specified workspace file (.wsp)
generated by either transFVI or transVIF.

• formalpro_options

One or more formalpro command-line option (for a complete list see the formalpro
Command command page). If you use the -fvi or -wsp option, the options you specify here
are added to the options specified in the WSP file.

Examples

This example runs post-synthesis (Precision) equivalence check on an FPGA design that uses
Altera components. The synthesis process has produced an FVI file. At the start of the
FormalPro run, the FVI file is processed by transFVI, producing a WSP file that contains the
command line options for the FormalPro run:

formalpro_fpga -fpga altera -fvi infile.fvi

(Note that the .fvi file contains the vendor flag, so “-fpga altera” is not required here.)

In this example a previously generated WSP file (infile.wsp) is specified:

formalpro_fpga -fpga altera -wsp infile.wsp

This example starts a GUI session using a formalpro_fpga license:

formalpro_fpga -gui -fpga xilinx

FPGA Tools
transFVI

FormalPro Reference Manual, 2018.1 161
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

transFVI
Translates an FVI file into the FormalPro files required for post-synthesis equivalence
checking.

Usage

transFVI [-vendor {actel | altera | xilinx}] [-y technology_library]
[-path_map string=newstring]... infile.fvi

FormalPro command-line invocation use:
-fvi infile.fvi

Arguments

• -v[ender] {actel | altera | xilinx}

This specifies the vendor used in the design source. The vendor is typically included in the
generated FVI file. If it is missing or incorrect, transFVI will produce faulty output files.
Explicitly specifying the vendor on the transFVI command line ensures that the vendor
specification in the generated FormalPro files is correct. This switch overrides existing
information in the FVI file.

• -y directory_path

This specifies the path to the FPGA verification library. You may include this option on the
command line multiple times, once for each verification library.

• -path_map string=newstring ...

The files generated by transFVI contain strings that specify the full path to the design
source, extracted from the FVI file generated by Precision RTL. The source paths that were
valid at Precision RTL runtime may not be valid at FormalPro runtime.

The -path_map option uses a simple string replacement to transform paths, replacing string
with newstring, where ever string occurs. This option can be repeated on the command line.
You cannot use this option if the environment variable FORMAL_PATH_MAP is set. For
more information, see the Environment Variables section at the end of this section.

Example1: At Precision runtime the source files are in /home/design/myfiles. At FormalPro
runtime they will be in /home/verification/myfiles:

-path_map /home/design=/home/verification

Example2: The Precision runtime environment is Windows. The FormalPro runtime
environment is UNIX. On the transFVI commandline backslashes must be escaped (\\) or
the entire map string must be enclosed in quotation marks:

-path_map c:\\path\\design=/home/verification

or

-path_map c:"\path\design=/home/verification"

FormalPro Reference Manual, 2018.1162

FPGA Tools
transFVI

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 3: You can specify multiple mappings by repeating the -path_map option on the
command line. The transformations are applied in the order they appear on the command
line:

transFVI -precision \
-path_map "c:\VHDL\path1\=/user/ausome/VHDL/"\
-path_map "c:\VHDL\path2\=/user/ausome/VHDL/"\
-path_map "c:\VHDL\path3\=/user/ausome/VHDL/"

Description

The transFVI utility takes as input infile.fvi (an FVI file generated by Precision RTL) and
outputs the set-up files used by FormalPro for a post-synthesis equivalence check. transFVI can
be invoked as a separate utility (see first usage), or can be invoked as an command-line option
in the FormalPro command-line invocation (see -fvi on the formalpro_fpga page).

The setup files generated by transFVI are:

infile.bb — blackbox file

infile.config — configuration file

infile.constr — constraint file

infile.flow — flow file

infile.match — explicit-match file

infile.rule — match-rule file

infile.wsp — workspace file containing the FormalPro command line

Environment Variables

FORMAL_PATH_MAP

The environment variable FORMAL_PATH_MAP provides the same functionality as the -
path_map option. If FORMAL_PATH_MAP is set, you cannot use the -path_map option.

The string mapping must be enclosed in quotes. You can specify multiple string mappings,
separated by a space.

For example:

setenv FORMAL_PATH_MAP \
"c:\VHDL\path1\=/user/ausome/VHDL/ \VHDL\path2\=/user/ausome/VHDL/"

FPGA Tools
transVIF

FormalPro Reference Manual, 2018.1 163
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

transVIF
Translates a VIF file generated by SynplifyPro into the FormalPro setup files required for post-
synthesis equivalency checking.

Usage

transVIF [-y technology_library] infile.vif

Arguments

• -y directory_path

This specifies the path to one, and only one, FPGA verification library. You may include
this option on the command line multiple times, once for each required library.

Description

The transVIF utility takes as input a VIF file generated by SynplifyPro and outputs the
FormalPro files required for a post-synthesis equivalency check. One of output files is a
workspace file (.wsp) containing the complete command line invocation for starting the
equivalency check.

The transVIF utility expects an input file with a .vif extension. Assuming an input file named
infile.vif, transVIF outputs these FormalPro files:

infile.bbox — blackbox file

infile.conf — configuration file

infile.constraint — constraint file

infile.flow — flow file

infile.user — explicit-match file

infile.rule — match-rule file

infile.wsp — workspace file containing the FormalPro command line

FormalPro Reference Manual, 2018.1164

FPGA Tools
transVIF

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Reference Manual, 2018.1 165
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 4
Debugger Commands

The fpdebug command invokes the FormalPro debugger. Once invoked, you can use the
debugger shell commands to debug design differences.

The debugger shell commands are described in Table 4-1.

For more information on using the FormalPro debugger, see Debugging Design Differences in
the FormalPro User’s Manual.

fpdebug Command . 166

Debugger Shell Commands. 170

FormalPro Reference Manual, 2018.1166

Debugger Commands
fpdebug Command

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

fpdebug Command
Invokes the FormalPro debugger program shell.

Usage

fpdebug [-cache cacheDir] [diffNetworkName] [-f command_file] [-tlist targetListFile]
[-tmax number] [-jnl journalFile] [targetTypes]

Description

When invoked, the FormalPro debugger program extracts a Verilog difference network and
provides access to set of interactive commands you can use in the debugger shell to assist in
finding the location of design differences. A difference network is a logic network of failing
targets.

If the FormalPro comparison ended with a high number of different targets, you can debug a
subset of these targets by using the -tlist or -tmax switches. If you choose to use either of these
switches, the difference network is saved in Verilog format in the directory formalpro.cache/
debug.

After extracting the difference network, the debugger performs auto network learning, which is
a form of structural analysis, on the network to merge similar gates between the A and B
networks. This simplifies the difference network.

Statistical information (numbers of inputs, outputs, and gates) displays while the difference
network is extracted. Based on this data, the debugger recommends a set of instructions for the
interactive debug process.

The transcript information is save to the file fpdebug.log in the logs directory of the FormalPro
cache. All the debug commands entered are also saved to the journal file fpdebug.jnl in the
debug directory of the FormalPro cache.

Arguments

• -cache cacheDir

Optional switch and string value that specifies a FormalPro cache directory to extract the
difference network from for the debug session. By default, the difference network is
extracted from and saved to the FormalPro cache in the current directory. The difference
network file is saved in a debug directory and named difference_1.v file in the FormalPro
cache.

GUI Location

Project tab >General tab > Cache directory entry box

Debugger Commands
fpdebug Command

FormalPro Reference Manual, 2018.1 167
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• diffNetworkName

Optional string value that specifies a difference network file to load for the debug session.
By default, the difference network from the current directory is loaded: formalpro.cache/
debug/difference_1.v

• -f commandFile

Optional switch and string value that specifies a text file to load for the debug session. This
text file can contain debug commands to execute automatically or be any other text file
created by the FormalPro debugger you want loaded. The format of the commandFile used
for debug commands is as follows:

commented line
<command> ... \
<command> ...

Comment out all newline characters and use a back-slash (\) when specifying options across
multiple lines.

• -tlist targetListFile

Optional switch and string value that specifies a text file containing a list of targets to load
for the debug session. The file specifies a list of target numbers as follows:

to9
tf27d
tf36q

To determine the targets for this file, you must run the FormalPro debugger on the complete
set of targets and perform some initial analysis to determine which targets you want to load,
create a targetListFile, and restart the debugger loading the targetListFile.

• -tmax number

Optional switch and integer value that specifies the maximum number of random targets to
load for the debug session.

GUI Location

Debugger tab > Difference net entry box

GUI Location

Debugger tab > Command file entry box

GUI Location

Debugger tab > Target list entry box

GUI Location

FormalPro Reference Manual, 2018.1168

Debugger Commands
fpdebug Command

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -jnl journalFile

Optional switch and string value that specifies a name and location for the journal file. The
journal file records all debug commands issued during a debug session. By default, the
journal file is saved in the following location:

./formalpro.cache/debug/fpdebug.jnl

• targetTypes

Optional series of switches that specify the types of targets to load for the debug session.
Switch options include:

-cycles — loads unsolved targets due to being fed by cycles.

-diffs — loads targets designated as not equivalent (default).

-floats — loads unsolved targets due to being fed by floating net.

-md — loads unsolved targets due to being fed by multiply driven nets.

-unsolved — loads targets designated as unsolved.

-unmatched — loads targets designated as fed by unmatched.

You can specify any of these switches on the command line, in any order. Note that if you
specify any switches, the default switch (-diffs) is not used unless you specify it.

• -help

Optional switch that displays help for the fpdebug command and a list of the debugger shell
commands.

Examples

The following example shows how to load a custom-named difference network from a non-
standard FormalPro cache directory.

fpdebug -cache formalpro_new.cache difference_new.v

The following example loads all targets listed in targets.list and creates a difference vector,
difference_user.v, based on those targets.

fpdebug -tlist targets.list difference_user.v

Debugger tab

GUI Location

Debugger tab > Journal file entry box

GUI Location

Debugger tab

Debugger Commands
fpdebug Command

FormalPro Reference Manual, 2018.1 169
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example loads all targets designated as fed by cycle or fed by floating net from the
FormalPro cache named alternate.cache.

fpdebug -cache alternate.cache -cycles -floats

FormalPro Reference Manual, 2018.1170

Debugger Commands
Debugger Shell Commands

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Debugger Shell Commands
The fpdebug command invokes the FormalPro debugger. Once invoked, you can use the
debugger shell commands to debug design differences.

The debugger shell commands are described in Table 4-1.

For more information on using the FormalPro debugger, see Debugging Design Differences in
the FormalPro User’s Manual

Table 4-1. Debugger Command Summary

Command Description

Simplification Commands

networklearn Determines if the identified gate pairs are functionally equivalent. If the
gate pairs are found to be equivalent, the design B subcone is merged
into design A.

checkequiv Determines if two gates, one from design A and the other from design
B, are functionally equivalent.

addtarget Creates a new target based on two comparison points (one from each
design); once the new target is created, you can run an analysis on it.

pairgates Identifies gates that should have functionally equivalent behavior,
which the debugger has not already detected.

Investigation Commands

analyze Investigates the logic driving each target and the logic structure and
functionality of both the A and B networks. This command also prunes
the error region contained in B, given that A is the reference.

drives Provides information about the number of targets driven by the
netName or gateID.

btc Checks specified targets for buffer tree parity.

statistics Displays statistics about the logic fan-in structure driving the selected
target(s).

nodeinfo Displays information about the specified schematic instance or gate
name.

whatif Internally modifies the functionality of the difference network, based on
the whatifArgument, then queries the difference network to determine
the equivalency of the affected target(s).

extracteco Main entry command for ECO and difference region analysis
capabilities. Analyze difference regions and extract or generate patch
information for ECO and debug use models.

Schematic Display Command:

Debugger Commands
Debugger Shell Commands

FormalPro Reference Manual, 2018.1 171
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

showschematic Examines the difference network logic structure as it exists at
invocation and displays a schematic representation of the network.

Report Commands

eqnetreport Generates a report identifying functionally equivalent nets between the
two designs.

pinpointreport Generates a report identifying potential areas of error discovered by the
debugger.

Save Commands:

savenetwork Writes out the logic difference network as it exists at the point of
invocation.

extracttarget Writes to a file a logic difference network for selected targets.

Miscellaneous Commands

help Displays help the fpdebug command and debugger shell commands.

syntax Displays the syntax for the debugger commands.

quit Exits the debugger shell without saving.

Table 4-1. Debugger Command Summary (cont.)

Command Description

FormalPro Reference Manual, 2018.1172

Debugger Commands
addtarget

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

addtarget
Creates a new target based on two comparison points (one from each design).

Usage

{addtarget | add} gateA gateB

Arguments

• gateA

An argument that specifies a comparison point from design A.

• gateB

An argument that specifies a comparison point from design B.

Description

Once the new target is created, you can run an analysis on it.

This command is useful when you think that comparison points should have similar behavior,
but they display different logic values in a schematic display (showschematic -diff). By using
addtarget on these two gates, and then performing an analysis on the newly created target
(analyze), you can quickly identify the state and primary input assignments that forced these
two gates to diverge.

GUI Access

From a Target Schematic or Target Difference Schematic that shows the comparison points you
want to use to create a new target:

1. Select the A side comparison point.

2. Select the B side comparison point.

3. Click and hold the Gate Pair Functions button.

4. From the exposed drop-down menu, select Add target.

The Debug tab is displayed and the addtarget command is issued.

debug> addtarget U188 U263
..... addtarget \A.uart_top.U404.Y \B.uart_top.U404.Y
..... Added new target to900001

You can now perform various debug tasks on this new target, such as Statistics or Analyze.

Debugger Commands
addtarget

FormalPro Reference Manual, 2018.1 173
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following command creates a target between the two gates: \
A.pgmbl_m8051.m8051.U10.i_2335.Z and \B.pgmbl_m8051.m8051.U10.i_2335.Z.

fpdebug> add \A.pgmbl_m8051.m8051.U10.i_2335.Z
\ \B.pgmbl_m8051.m8051.U10.i_2335.Z

The following command creates a target between the two gates U1152 and U1160. This
example uses internally generated gate names, as shown in the schematic viewer of the
FormalPro GUI.

fpdebug> add U1152
U1160

FormalPro Reference Manual, 2018.1174

Debugger Commands
analyze

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

analyze
Investigates the driving logic and logic structure and functionality of both the A and B
networks.

Usage

{analyze | ana} [-bdd] [-atpg] [-rps] [-engine] [target …]

Arguments

• -bdd

An argument that uses a difference vector discovery algorithm based on binary decision
diagrams.

• -atpg

An argument that uses a difference vector discovery algorithm based on ATPG.

• -rps

An argument that uses a difference vector discovery algorithm based on random pattern
simulations.

• -engine

An argument that uses a difference vector discovery algorithm based on the difference
vector discovered during the Solve stage of FormalPro.

• target …

An argument that specifies the target to be analyzed. You can specify this argument any
number of times from the command prompt. The default behavior is for the analyze
command to perform analysis on every target in the difference network.

Description

Investigates the logic driving each target and the logic structure and functionality of both the A
and B networks. This command also prunes the error region contained in B, given that A is the
reference.+

During this analysis, the debugger records difference vectors. In addition, the difference vector
that has the smallest number of necessary primary input assignments is stored for later use by
the showschematic -diff command.

If you do not provide a list of target arguments, the debugger performs analysis iteratively on
every target in the difference network.

The analyze command also uses the networklearn command on individual targets.

You should use this command without specifying a target only when the number of targets in
the difference network is small. Otherwise, first use the statistics command to choose targets
for analysis.

Debugger Commands
analyze

FormalPro Reference Manual, 2018.1 175
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

At the completion of the analyze command, the debugger might have discovered some
additional candidate gates that could be checked for equivalency. The debugger stores these
candidate gate pairs for later use with the checkequiv command to check their equivalency.

By default, analyze uses the four different search methods (-bdd, -atpg, -rps, and -engine) to
discover a difference vector. You can specify which methods are to be used by including the
method switches on the command line.

GUI Access

From any debug transcript or report that shows the target you wish to analyze:

1. Right-click the target name, such as tf19d.

2. From the exposed drop-down menu select the option Analyze.

The Debug tab is displayed and the analyze command is issued.

Examples
fpdebug> ana to90

fpdebug> ana to98
to99

FormalPro Reference Manual, 2018.1176

Debugger Commands
btc

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

btc
Checks specified targets for buffer tree parity.

Usage

btc target...

Arguments

• target...

Space separated list of target names to check for buffer tree parity errors.

Description

Checking for buffer tree parity is useful when comparing gate-to-gate designs that have a high
degree of structural similarity.

When formalpro matches up input ports and registers, it uses those points to create a series of
pseudo primary inputs for each matched input port and matched register (in addition to pseudo
primary outputs for each register). These pseudo primary inputs are used to tie the matched
logic nets or matched ports from design A and B for equivalency checking.

The buffer tree parity check examines the parity of the inverter/buffer chains driven by the
pseudo primary input into both design A and design B up to either the first multiple input gate or
a net with multiple fanouts. When a parity difference is detected during the check, a Buffer Tree
Parity Check (.btc) file is created. For each parity check error found, a report file is created at
formalpro.cache/debug/<target>.btc.

The .btc file lists the failing target name and associated target comparison points along with a
trace of the nets that make up the checked parity chain.

The following example shows the contents of a .btc file:

Target to2 buffer tree parity check
Design A comparison pt: \A.top.rdw_status
Design B comparison pt: \B.top.rdw_status
 Buffer/Inverter chain paths reach gates with different chain parities
(i0).
 A design chain:
 + \A.top.read
 + \A.top.read32
 + \A.top.read32_dly
 B design chain:
 + \B.top.read
 + \B.top.read32
 - \B.top.read_32n

The first entry in chains is the port/register name. The +/- tracks parity of chain (- inverted).

Debugger Commands
btc

FormalPro Reference Manual, 2018.1 177
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Though not shown above, if a complimentary match was made for the 1st chain entry, the parity
setting would show asterisk (*) after the name with the message “* Note: defined as
complementary match point.”

When parity check errors occur, you should check the logic for a design error, a potential
incorrect library model, or an error in FormalPro determination of complementary matching.

Examples

The following command checks for buffer tree parity on the following targets: to1, tf11q, tl, and
100q:

fpdebug> btc to1 tf11q
tl100q

FormalPro Reference Manual, 2018.1178

Debugger Commands
checkequiv

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

checkequiv
Merges gate from design A to verify equivalence.

Usage

{checkequiv | chk} [gateA gateB]

Arguments

• gateA

An argument that specifies a gate from design A.

• gateB

An argument that specifies a gate from design B.

Description

Determines if two gates, one from design A and the other from design B, are functionally
equivalent.

If the two gates are equivalent, the debugger automatically merges the gate in design A to drive
the fanout logic in design B. This assumes that if the gates are functionally equivalent, none of
the logic nets that fan into gate B can be the source of error.

If you do not provide any arguments, checkequiv runs iteratively on the entire list of potential
functionally-equivalent gate pairs stored during target and/or network analysis.

Normally, the networklearn command finds many of the functionally equivalent gates.
However, network learning might not have solved the equivalency verification problem because
it has a short run time before time-out. checkequiv, with its longer run time before time-out,
might be more successful.

GUI Access

From a Target Schematic or Target Difference Schematic that shows the comparison points of
which you want to check equivalence:

1. Select the A side comparison point.

2. Select the B side comparison point.

3. Click and hold the Gate Pair Functions button.

4. From the exposed drop-down menu, select Check equivalent.

The Debug tab is displayed and the addtarget command is issued.

Debugger Commands
checkequiv

FormalPro Reference Manual, 2018.1 179
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

debug> checkequiv U188 U263
..... checkequiv U188 U263
 NOT EQUIVALENT!

Examples

The following command verifies the equivalence between the two gates U1152 in design A and
U1160 in design B. This check uses the internally generated names, as shown in the schematic
viewer of the FormalPro GUI.

fpdebug> chk U1152
U1160

FormalPro Reference Manual, 2018.1180

Debugger Commands
drives

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

drives
Lists the targets driven by a specified net or target.

Usage

drives [-l] {netName | gateID}

Arguments

• -l

An argument that instructs the debugger to list the targets driven by the netName or gateID
in addition to the target ratio information.

• netName

An argument that specifies the name of a net within the difference network.

• gateID

An argument that specifies the ID number of a gate in the difference network.

Description

Provides information about the number of targets driven by the netName or gateID.

The information includes a ratio of the targets driven to the total number of targets.

GUI Access

There is no specific GUI function to perform this task. However, the Nodeinfo command does
produce information equivalent to the drives -l command in the Targets driven section of the
report.

From any debug transcript or report that shows the net you wish to analyze:

1. Right click on an object name, such as \A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo.

2. From the exposed drop-down menu select the option Nodeinfo.

The Debug tab is displayed and the nodeinfo command is issued.

Debugger Commands
drives

FormalPro Reference Manual, 2018.1 181
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

debug> nodeinfo {\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo}

... nodeinfo \A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo
 Status: U1355 PAIRED
 Orig Netlist:
 buf (\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo ,

\A.uart_top.I4/
xmitdt_reg[6].SFFR.Y);
 Fansout To:
 tf19d
 mf19t2
 Paired Mate: U1376
 Targets driven:
 tf19d (\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo)
 tf19q (\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo)
..... 2/37 (5.41%) targets are driven by \A.uart_top.I4/
xmitdt_reg[6].SFFR.Q_ppo

Examples

The following command returns information on targets in the fan out of gate U1314:

fpdebug> drives U1314

The following command returns detailed information on gate \B.m8051.U10.Z:

fpdebug> drives -l
\B.m8051.U10.Z

FormalPro Reference Manual, 2018.1182

Debugger Commands
eqnetreport

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

eqnetreport
Generates a report, fileName, identifying functionally equivalent nets between the two designs.

Usage

{eqnetreport | enr} fileName

Arguments

• fileName

An argument that specifies the location and name of the report the debugger generates. By
default, this file is saved in the debug directory of the FormalPro cache.

Examples
fpdebug> enr equiv_net.report

Debugger Commands
extracteco

FormalPro Reference Manual, 2018.1 183
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

extracteco
Depending on switches used, this command analyzes difference regions and extracts or
generates patch information for ECO and debug use models.

Usage

extracteco [-generate] [-final directoryPath] [-correspond fullNameA fullNameB]

Arguments

• -generate

Analyzes the current miter and failing compare points and generates patch data in the ECO
patch DB in the <cache>/eco directory. The -generate switch is mutually exclusive with the
-final switch.

• -final directoryPath

The -final switch is used to “finalize” ECO patch data as described earlier. The
directoryPath field is optional and is used to specify a directory where the output patch files
are written. By default, patch data is written into the <cache>/eco directory. The -generate
switch is mutually exclusive with the -final switch.

• -correspond fullNameA fullNameB

The user in some cases can help the patch quality by providing functional correspondence
pairs to the tool. This switch provides an interactive way the user can identify a pair of
signals (one on the A side, one on the B side) as a functional correspondence point.

Description

The extracteco command is expected to be called after an ECO design and original layout netlist
have been compared. If the user wishes to generate a patch for a subset of the failing points, then
the -tlist switch is used with formalpro command as described earlier. It is expected that the user
will not use the command very often; it is provided for GUI access needs.

GUI Access

Location: Tools tab > ECO Operations > Extract ECO

Action: Same as extracteco -generate.

Location: Tools tab > ECO Operations > Finalize ECO

Action: Same as extracteco -final.

Location: Tools tab > ECO Operations > Add Correspondence Constraint

Action: Same as extracteco -correspond.

Location: Debug Tab > Difference Region Analysis

Action: Same as extracteco -generate.

FormalPro Reference Manual, 2018.1184

Debugger Commands
extracteco

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Related Topics

-eco

-tlist

eco_correspond

Debugger Commands
extracttarget

FormalPro Reference Manual, 2018.1 185
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

extracttarget
Writes out a logic difference network for selected target(s) to the file fileName.

Usage

{extracttarget | ext} [-f fileName] {target …}

Arguments

• -f fileName

A switch and argument pair that specifies the name of the extracted difference network. If
you do not specify this switch, the default fileName is Target_targetName.v, where
targetName is the specified target, and is saved in the debug directory of the FormalPro
Cache. If you specify more than one target, the default fileName is FDDT_Targets.v.

• target …

An argument that specifies the target to be extracted. You can specify this argument any
number of times.

Description

Use this command when the difference network is large and has many failing targets. It works
on a subset of the difference network, which is usually more efficient. Re-invoke the debugger
with the subset file fileName. For example, if all bits of a bus are failing targets, it is likely that
there is a single source of difference. In that case, working on a single bit is more productive.

Examples
fpdebug> ext to98

fpdebug> ext -f diffnet_t099.v

FormalPro Reference Manual, 2018.1186

Debugger Commands
help

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

help
Displays help information for the fpdebug command and debugger shell commands.

Usage

help

Arguments

None

Examples
fpdebug> help

Debugger Commands
networklearn

FormalPro Reference Manual, 2018.1 187
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

networklearn
Finds logic gate pairs that are potentially equivalent.

Usage

{networklearn | learn} [-l | -m | -h]

Arguments

• -l

A switch that performs an analysis requiring a low amount of CPU time. This is the default
behavior if you do not specify a switch to this command.

• -m

A switch that performs an analysis requiring a medium amount of CPU time.

• -h

A switch that performs an analysis requiring a high amount of CPU time.

Description

Examines the network structure and finds logic gate pairs that are potentially equivalent.

Note
The debugger performs this command automatically on individual targets when you run the
analyze command.

This command determines if the identified gate pairs are functionally equivalent. If the gate
pairs are found to be equivalent, the design B subcone is merged into design A.

Although the equivalency checking algorithm is complete, it might not be able to determine
equivalency because of time constraints. The options -l, -m, and -h control the efficiency of the
gate learning by allocating varying CPU-time analysis. If you are not extracting a subset of the
difference network for use in another invocation of fpdebug, you should enter networklearn
first.

Examples
fpdebug> learn -m

FormalPro Reference Manual, 2018.1188

Debugger Commands
nodeinfo

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

nodeinfo
Displays information about the specified schematic instance or gate.

Usage

{nodeinfo | ni} {netName | gateID}

Arguments

• netName

An argument that specifies the name of a net within the difference network.

• gateID

An argument that specifies the ID number of a gate in the difference network.

Description

The information includes the full name of the net, its pairing status, which gates it drives, and
targets in its fanout.

GUI Access

From any debug transcript or report that shows the net to analyze:

1. Right click on an object name, such as \A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo.

2. From the exposed drop-down menu select the option Nodeinfo.

The Debug tab is displayed and the nodeinfo command is issued.

debug> nodeinfo {\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo}

... nodeinfo \A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo
 Status: U1355 PAIRED
 Orig Netlist:
 buf (\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo ,

\A.uart_top.I4/
xmitdt_reg[6].SFFR.Y);
 Fansout To:
 tf19d
 mf19t2
 Paired Mate: U1376
 Targets driven:
 tf19d (\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo)
 tf19q (\A.uart_top.I4/xmitdt_reg[6].SFFR.Q_ppo)
..... 2/37 (5.41%) targets are driven by \A.uart_top.I4/
xmitdt_reg[6].SFFR.Q_ppo

Examples

The following command returns information on target to99:

fpdebug> ni to99

Debugger Commands
nodeinfo

FormalPro Reference Manual, 2018.1 189
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following command returns information on gate \A.pgm.m8051.U10.i_23.Z:

fpdebug> ni \A.pgm.m8051.U10.i_23.Z

The following command returns information on a gate ID (U1160), as shown in the schematic
viewer of the FormalPro GUI:

fpdebug> ni U1160

FormalPro Reference Manual, 2018.1190

Debugger Commands
pairgates

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

pairgates
Identifies gates with equivalent behavior.

Usage

{pairgates | pair} gateA gateB

Arguments

• gateA

Specifies a gate from design A.

• gateB

Specifies a gate from design B.

Description

Identifies gates that should have functionally equivalent behavior, which the debugger has not
already detected.

GUI Access

From a Target Schematic or Target Difference Schematic that shows the comparison points of
which you want to identified as paired:

1. Select the A side comparison point.

2. Select the B side comparison point.

3. Click and hold the Gate Pair Functions button.

4. From the exposed drop-down menu, select Pair gates.

The Debug tab is displayed and the addtarget command is issued, using the internal
identifiers.

debug> pairgates U188 U263
..... pairgates U188 U263

Examples
fpdebug> pair \A.pgmbl_m8051.m8051.U10.i_2335.Z
\ \B.pgmbl_m8051.m8051.U10.i_2335.Z

Debugger Commands
pinpointreport

FormalPro Reference Manual, 2018.1 191
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

pinpointreport
Identifies potential areas of error discovered by the debugger.

Usage

{pinpointreport | ppr} [-win] fileName

Arguments

• -win (GUI mode only)

A switch that displays the contents of the report in a text window in addition to writing the
information to fileName.

• fileName

An argument that specifies the location and name of the report the debugger generates. By
default, this file is saved in the debug directory of the FormalPro cache.

Description

Use this command after performing analyze on the desired targets.

The debugger reports the percentage of comparison points that you can be obtain from the error
site, and the report is sorted by the percentage figure.

This report is generally useful on designs similar in structure. The percentage of targets solved
by the isomorphism engine is a good indicator of structural similarity.

Examples
fpdebug> ppr ./fpdebug_reports/pinpoint.report

FormalPro Reference Manual, 2018.1192

Debugger Commands
quit

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

quit
Exits the debugger shell without saving.

Usage

quit

Arguments

None

Examples
fpdebug> quit

Debugger Commands
savenetwork

FormalPro Reference Manual, 2018.1 193
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

savenetwork
Writes out the logic difference network as it exists at the point of invocation.

Usage

{savenetwork | save} fileName

Arguments

• fileName

An argument that specifies a file name.

Examples
fpdebug> save diffnet_test.v

FormalPro Reference Manual, 2018.1194

Debugger Commands
showschematic

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

showschematic
Displays a schematic representation of the difference logic structure (only available from the
GUI).

Usage

{showschematic | show} [-diff] [-merge] [target]

Arguments

• -diff

A switch that displays a schematic showing the effect of simulating a difference vector on
the target. The schematics display values on the output of every gate with a logic 0 or logic
1. The schematics only display gates that contribute to the difference or its propagation.

• -merge

A switch that displays a single schematic containing designs A and B with all merged gates
displayed only once. If you specify target, the schematic is limited to the cone of logic in the
fan-in of this target; this is the recommended syntax.

• target

An optional argument that specifies the target(s) to be extracted.

Description

Examines the difference network logic structure as it exists at invocation and displays a
schematic representation of the network.

The -MERGE switch displays one schematic for design A and B, with all merged gates
displayed only once.

Within the schematics, the gates will be color-coded as follows:

You can specify the color for the schematic from Edit > Preferences. For more information,
see “Main Menu Bar” in the FormalPro User’s Manual.

Examples
fpdebug> show -merge
-diff to99

Yellow Comparison point (merged schematic).

Red Gates in both designs that are potential sources of error.

Green Paired gate in design A to a gate in design B.

Blue Paired gate in design B to a gate in design A.

Gray Gates that are structurally equivalent between the designs.

Purple Nets that are required to exhibit the difference.

Debugger Commands
showschematic

FormalPro Reference Manual, 2018.1 195
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

fpdebug> show -diff
to99

FormalPro Reference Manual, 2018.1196

Debugger Commands
statistics

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

statistics
Displays statistics about the logic fan-in structure driving the selected target(s).

Usage

{statistics | stats} [-file] {target …}

Arguments

• -file

An argument that allows you to write the results of this command to the target_stats.txt file
in the debug directory of the FormalPro cache. By default, this information is written to
stdout and the Debug log.

• target …

An argument that specifies the target(s) to display statistics about. You can specify this
argument any number of times.

Description

If you do not specify a target, the debugger displays statistics for all failing targets.

The statistics include instance count, the number of equivalent gates and paired gates, and the
combinational depth.

GUI Access

From any debug transcript or report that shows the target you wish to analyze:

1. Right-click the target name, such as tf19d.

2. From the exposed drop-down menu select the option Stats.

The target_stats tab is displayed containing information about the target.

Examples
fpdebug> stats to99

fpdebug> stats to99
to98

Debugger Commands
syntax

FormalPro Reference Manual, 2018.1 197
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

syntax
Displays the syntax for the debugger commands.

Usage

{syntax | syn}

Arguments

None

Examples
fpdebug> syn

FormalPro Reference Manual, 2018.1198

Debugger Commands
tdvr

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tdvr
Analyzes the difference vectors for each target .

Usage

tdvr [-f fileName] [-win]

Arguments

• -f fileName

A switch and argument pair that specifies the name to save the information as. This
information is saved in the debug directory of the FormalPro cache. If you do not specify
this switch, the information displays in the fpdebug.log as well as stdout.

• -win (GUI mode only)

A switch that displays the contents of the report in a text window in addition to writing the
information to fileName.

Description

Use this command after performing analyze on the desired targets.

Analyzes the difference vectors for each target loaded into the debugger and writes information
about the input/register value assignment percentages to the file fileName. TDVR (Target
Difference Vector Report).

Examples
fpdebug> tdvr

fpdebug> tdvr -f diff_vector.txt

Debugger Commands
whatif

FormalPro Reference Manual, 2018.1 199
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

whatif
Modifies the functionality of the difference network based on the whatifArgument

Usage

whatif whatifArgument

Arguments

• convert gateType {gateName …}

An argument that converts all gateName(s) to the specified gateType.

gateType — An argument that specifies a primitive gate type, which is one of the
following:

buf, not, and, nand, or, nor, xor, xnor, mux

gateName — An argument that specifies the name of a gate. You can specify any
number of names for this argument.

The following example shows how the whatif convert command converts a standard
Verilog AND statement to a NOR statement. Given the statement:

and (\B.n51625 , \B.data0 , \B.sel);

the debugger command:

fpdebug> whatif convert nor \B.n51625

changes the above statement to the following:

nor (\B.n51625 , \B.data0 , \B.sel);

• invert {gateName …}

An argument that inverts all gateName(s).

gateName — An argument that specifies the name of a gate. You can specify any
number of names for this argument.

• const0 {gateName …}

An argument that ties all gateName(s) to the constant value of 0.

gateName — An argument that specifies the name of a gate. You can specify any
number of names for this argument.

• const1 {gateName …}

An argument that ties all gateName(s) to the constant value of 1.

gateName — An argument that specifies the name of a gate. You can specify any
number of names for this argument.

• deleteport gateName {portName …}

An argument that deletes the connection of all nets in the portName list from the gate
gateName.

FormalPro Reference Manual, 2018.1200

Debugger Commands
whatif

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

gateName — An argument that specifies the name of a gate.

portName — An argument that specifies the name of a port (net name). You can specify
any number of names for this argument.

The following example shows how the whatif deleteport command transforms a standard
Verilog statement. Given the statement:

or (\B.select , \B.data0 , \B.data1 , \B.data2 , \B.data3);

the debugger command:

fpdebug> whatif deleteport \B.select \B.data3

changes the above statement to the following:

or (\B.select , \B.data0, \B.data1 , \B.data2);

• invertport gateName {portName …}

An argument that inverts the connection of all nets in the portName list into the gate
gateName.

gateName — An argument that specifies the name of a gate.

portName — An argument that specifies the name of a port (net name). You can specify
any number of names for this argument.

The following example shows how the whatif invertport command transforms a standard
Verilog AND statement:

Given the statement:

and (\B.n51625 , \B.data0 , \B.sel);

the debugger command:

fpdebug> whatif invertport \B.n51625 \B.sel

changes the above statement to the following:

not (\B.sel_fpdebugbar , \B.sel);
and (\B.n51625 , \B.data0 , \B.sel_fpdebugbar);

• addports gateName {portName …}

An argument that adds the connection of all nets in the portName list into the gate
gateName.

gateName — An argument that specifies the name of a gate.

portName — An argument that specifies the name of a port (net name). You can specify
any number of names for this argument.

The following example shows how the whatif addports command transforms a standard
Verilog statement. Given the statement:

or (\B.select , \B.data1, \B.data2 , \B.data3);

Debugger Commands
whatif

FormalPro Reference Manual, 2018.1 201
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the debugger command:

fpdebug> whatif addports \B.select \B.data0

changes the above statement to the following:

or (\B.select , \B.data1 , \B.data2 , \B.data3 , \B.data0);

• replaceports gateName {portName …}

An argument that replaces the net connection into the gate gateName, with those in the
portName list.

gateName — An argument that specifies the name of a gate.

portName — An argument that specifies the name of a port (net name). You can specify
any number of names for this argument.

The following example shows how the whatif replaceports command transforms a
standard Verilog statement. Given the statement:

or (\B.mmp0.enable , \B.mmp1.proc1_en , \B.mmp1.proc2_en);

the debugger command:

fpdebug> whatif replaceports \B.mmp0.enable \B.mmp0.proc1_en \
B.mmp0.proc2_en

changes the above statement to the following:

or (\B.mmp0.enable , \B.mmp0.proc1_en , \B.mmp0.proc2_en);

• build [fileName]

An argument that selects the whatif build mode, which allows you to specify multiple
whatif modifications. The debugger stores all whatif commands specified after the whatif
build command in an internal buffer.

fileName — An argument that specifies a file to be loaded into the buffer for the build
mode.

After entering the whatif build command, the prompt changes to whatif>.

• list

An argument that lists all commands in the current buffer.

• save fileName

An argument that writes the current buffer to the file fileName.

fileName — An argument that specifies the name of the file to be written.

• read fileName

An argument that reads in the file fileName and concatenates it into the current buffer.

fileName — An argument that specifies the name of the file to be read.

FormalPro Reference Manual, 2018.1202

Debugger Commands
whatif

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• check [-stopOnDiff number] [target …]

An argument that applies the changes specified in the buffer to the network and checks the
network for equivalence.

-stopOnDiff number — A switch that stops the check after number differences are
discovered.

target — An argument that checks the effect of the modifications in the buffer on all
targets in the target list. You can specify this argument any number of times in the
command line.

• end

An argument that ends the build mode and clears the buffer.

Description

Internally modifies the functionality of the difference network, based on the whatifArgument,
then queries the difference network to determine the equivalency of the affected target(s).

You can perform whatif analysis in two ways: either as a single modification with immediate
results, or as a series of modifications (build mode) that allows for incremental checking.

Note
The whatif command does not provide a permanent change. Essentially, it modifies, checks
status, and restores to the original network.

Many of the whatif commands require either gateName or portName arguments, or both. The
gateName and portName arguments are strings that specify a gate instance name in the
difference network (such as U123) or a full path net name (for example \A.top.U1.mysub.net2).
You can reference a gateName by its instance name or the net it drives. You can specify a
portName as an input port of a gate that is referenced by the net attached to this port or the gate
driving this net.

Caution
Typically, the design loaded into the debug environment is a subset of the entire design.
When you alter a design, based on results from FormalPro, it is possible that modifications

that create equivalency in this subset may cause inequivalencies in the portion of the design
existing outside of the subset. You should always rerun FormalPro to verify all modifications
for the entire modified design.

Like any other debug commands, you can type whatif commands at the fpdebug prompt. In
GUI mode, you can access all whatif commands, except addports and replaceports, from a
popup menu in the schematic.

To use whatif from the GUI for commands that require several arguments, first select the nets
to be passed as an argument. Then right-click on the gate to modify and choose the relevant

Debugger Commands
whatif

FormalPro Reference Manual, 2018.1 203
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

whatif item in the popup menu. For example, to delete a port on a cell, first select the net
driving the port, then right-click on the cell to select the whatif > delete port command.

FormalPro Reference Manual, 2018.1204

Debugger Commands
whatif

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Reference Manual, 2018.1 205
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 5
Input File Syntax

Depending on your need, there are several types of input files you can alter/create to specify
how parts of the design files are interpreted during checking.

• Constraint and Match File Scripts

• Rule Files — Supply regular expression replacement and substitution rules to implicitly
match comparison points between the two designs.

• Match Files — Specify explicit matches between comparison points in the two designs.

• Black Box Files — Declare Verilog modules or VHDL entities as black boxes.

• Constraint Files — Control how FormalPro compiles, matches and solves the two
designs.

• Configuration Files — Apply design constraints at the compile stage.

You can get help information on these files from the command line by typing the following
command at the shell prompt:

formalpro -help [rules | match | constraints | blackbox]

Constraint and Match File Scripts . 206

Rule Files . 207

Match Files . 210

Black Box Files . 216

Constraint Files . 220

Configuration Files . 247

FormalPro Reference Manual, 2018.1206

Input File Syntax
Constraint and Match File Scripts

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Constraint and Match File Scripts
Within Match and Constraint files, you can specify arbitrary scripts in any language, such as
Perl or Tcl, that specify a large number of matches or constraints.

For example, suppose a 32-bit bus was reversed during synthesis, such that buss(0) and buss(1)
in design A correspond to buss[31] and buss[30] in design B, respectively. Instead of writing 32
explicit match commands you could use the source command, as shown in the following
example:

source $FORMALPRO_HOME/bin/fp_tclsh
for {set i 0} {$i < 32} { incr i } {

puts "match register \\A.top.buss\(${i}\) \\B.top.buss\[[expr 31-$i]\]"
}
endsource

#Note that the leading '\' must be escaped.
#Note that it is best to use {} around your variable names to avoid
confusion

where source and endsource are the commands for this functionality, and /usr/local/bin/fp_tclsh
is the executable used to run the script located between source and endsource. If you use the
$FORMALPRO_HOME environment variable, you should also specify it in your source
command.

The usage syntax for this functionality can take two forms:

where FormalPro uses the language specified in <executable> to run the script within <body>.
FormalPro replaces, inclusively, all lines between source and endsource, with the standard
output of <executable>. Once this is completed, FormalPro resumes processing the Constraint
or Match file as normal.

VHDL Read Order File . 206

Options Applied Based on Platform. 207

VHDL Read Order File
Within the library category, you can specify an order file that appends the default order file in
the library directory. An order file is a text file that specifies the order in which FormalPro reads
VHDL library files. Each VHDL library shipped with FormalPro contains a default order file
(.ord).

Input File Syntax
Options Applied Based on Platform

FormalPro Reference Manual, 2018.1 207
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can specify your own order file by listing its location after the library location, separated by
a colon. For example:

[library]
ieee = $FORMALPRO_HOME/lib/fp_vhdl_libs/ieee:$HOME/myieee.ord

Options Applied Based on Platform
You can control which initialization file options are applied based on the platform type with
#ifdef, #ifndef, #else, #endif conditional operators. The conditional blocks cannot be nested and
platform options include "windows" and "linux".

For example:

stopOnUnmatched = false
#ifdef WINDOWS
mp = 1
#else
mp = 4
#endif
mplimit = 16

Rule Files
A rule file is a list of user-defined replacement rules that FormalPro uses during the match stage
to facilitate name matching of ports and registers in one design with the ports and registers of
the other. The replacement rules consist of regular expressions plus additional syntax described
in the “Usage” section below.

The affect of applying the replacement rules is accumulative. The names are transformed
according to the first rule and then an attempt to match A-side names with B-side names. Any
remaining unmatched names are then further transformed according to the second rule and
another attempt to match names is made. This is repeated until all ports and registers are
matched or all match rules have been applied.

The order of the replacement rules affects performance during the match phase. You should
order the rule list with the rules likely to match the most names first. This reduces the pool of
unmatched names faster, shorten the processing time of each subsequent match attempt.

Rule file syntax supports “rule sets”. At the end of a rule set, FormalPro resets any unmatched
names to their original state before applying the next set of rules. To define the end of a rule set,
insert a line in the rule file containing only a single period (.).

Comment lines in the rule file start with the pound sign (#) and end with a newline. FormalPro
also treats as a comment any line starting with a space, tab, or newline.

FormalPro Reference Manual, 2018.1208

Input File Syntax
Rule Files

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

User-Defined Rule Files

By default, FormalPro uses the following rule file containing some basic replacement rules:

$FORMALPRO_HOME/pkgs/fv/userware/rules.default

There are various ways to replace or augment the default rules. You can:

• Modify the default rule file

• Specify a user-defined rule file (the -ruleFile switch)

• Specify additional user-defined rule files (the -addRuleFile switch)

The -ruleFile switch enables you to specify a user-created rule file that is used in place of the
default file. The default rule file is ignored. Also ignored is any rule file specified in a previous
occurrence of the -ruleFile switch or the -addRuleFile switch (for example, if you specify one of
the switches in a formalpro.ini file). When creating your own rule file, use these guidelines:

• Because the default rules are ignored when you use the -ruleFile switch, it is typically
best to start with a copy of the default rules and modify or augment them as needed.

• Do not save user-defined rule files in the FormalPro cache because the cache is
overwritten in subsequent runs.

The -addRuleFile switch enables you to specify multiple rule files. The rules in multiple files
are applied in the order that the files are specified. For example, assume the switches appear in
this order:

-ruleFile A -addRuleFile B -addRuleFile C

In this case, the default rule file is ignored, the rules in A are applied, then the rules in B, then
the rules in C.

The occurrence of the -ruleFile switch completely overrides the operative replacement rules.
For example, assume the switches appear in this order:

-ruleFile A -addRuleFile B -ruleFile X -addRuleFile C

In this case, the rules in X are applied, then the rules in C. The rules in A and B are overridden
by the occurrence of -ruleFile X.

Consider the case where -addRuleFile is used, with no preceding -ruleFile:

-addRuleFile B

In this case the rules in the default rule file are applied, then the rules in B.

Input File Syntax
Rule Files

FormalPro Reference Manual, 2018.1 209
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Replacement Rule Usage

designId [+ | -] [p | i | o | r | f | l] rule

Arguments

• designId

A required string, which must be “A” or “B” (uppercase is required), indicating the
design to which the rule applies.

When specifying any of the following arguments, you cannot separate the arguments
from the designId by any white space. The following examples show correct usage of
the arguments:

A- s/alpha/beta/
Ap s/alpha/beta/
Ap+ s/alpha/beta/
Ai- s/alpha/beta/

• +

An argument that allows names that are the same in one design, due to name
transformation based on rules, to be matched to a single name in the other design.
Normally, only a single name from design A can be matched to a single name in design
B.

• -

An argument that states that no match analysis is to be performed after transforming the
names based on the rule. This allows you to perform multiple changes on a name before
attempting matching.

• p | i | o | r | f | l

Argument that applies the rule only to a specific type of object.

• rule

A replacement expression conforming to the syntax of the s, y, and d commands of the
sed editor as shown:

Substitution — performs string substitution on the first occurrence of original.

s/original/replacement/flag

p ports r registers

i inputs f flip-flops

o outputs l latches

FormalPro Reference Manual, 2018.1210

Input File Syntax
Match Files

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

where flag can be:

g — replace all occurrences of original

n — replace the nth occurrence of original. n must be between 1 and 152.

Translation — performs character translation

y/string1/string2/

Deletion — disregards objects for matching, whose names contain a given string

/string/d

Examples

The following transformation rule transforms all uppercase characters in design A to lowercase:

A y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/

The following substitution rule replaces, in design A, the string “_i_” at the end of a line by the
string “_bi”, where i is any number.

A s/_\([0-9]*\)_$/_b\1/

The following substitution rule suppresses the first occurrence of the string “_reg” in all targets
of design B.

B s/_reg//

The following substitution rule replaces, in design B, all occurrences of the string “clk_x_y”
with the string “clk”, where x and y are any number, and allows multiple matching (as specified
by the plus sign (+)). This rule would be useful for matching an external clock tree.

B+ s/clk_[0-9]*_[0-9]*/clk/g

The following substitution rule disregards names for matching, such as internally generated
names that end in “.ni” in design A.

A /\.n[0-9]*/d

Match Files
A match file allows you to specify explicit matches of comparison points between designs A
and B. Use the -matchFile command line switch to load a match file into FormalPro.

In the match file, comments start with the pound sign (#) character and end with a new line.

Input File Syntax
Match Files

FormalPro Reference Manual, 2018.1 211
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Within the Match file, you can use the Source command to include scripts that create match
commands. Refer to the section “Constraint and Match File Scripts” on page 206 for further
information.

Complement Matching

FormalPro allows you to explicitly match two objects that have different phases. You can make
this type of match using the match_compl command in place of match.

The action of the match_compl keyword is similar to that of the match keyword, except that
match_compl establishes a direct correspondence between an object in design A (ObjRefA) and
the invert of an object in design B (ObjRefB).

For each of the command syntax examples in the following sections, you can replace the match
keyword with match_compl.

Matching Registers

This section describes the match command for matching registers, which include both DFF and
latch devices.

Usage

• Register

match register [options] fullRegNameA
fullRegNameB

You can substitute match with match_compl to perform complement matching between the
registers.

Arguments

• fullRegName — A full-path register name.

• options — The options are described in the section “Match Command Options”.

Examples

match register \A.top.foo_cpu.reg1 \B.top.bar_cpu.reg1
match register \A.top.foo_bus[31:0] \B.top.foo_bus[0:31]
match register \A.top.array[0:64][7:0] \B.top.offsetArray[8:72][8:1]

Matching Objects of Top-level Modules

This section describes the match commands for matching objects of top-level modules between
designs A and B.

Usage

• Input ports

match input [options] fullPortNameA fullPortNameB

FormalPro Reference Manual, 2018.1212

Input File Syntax
Match Files

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

match input [options] A portNameA B
portNameB

• Output ports

match output [options] fullPortNameA fullPortNameB

match output [options] A portNameA B
portNameB

• Bidirectional ports

match bidir [options] A
portNameA B portNameB

• Top-level module

match top [options]

You can substitute match with match_compl to perform complement matching between the top-
level module objects.

Arguments

• fullPortName — The name of a port object from a top-level module. This object must
appear in the scalar port file as an input.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

• options — The options are described in the section “Match Command Options”, where -
force may be the most useful.

Examples

match input A in2[0] B in1[0]
match_compl input \A.top.in2[0] \B.top.in1[0]
match output A outA[0] B outB[0]
match output \A.top.in2[0] \B.top.in1[0]

The following example matches the ports of the top-level modules of designs A and B by their
port position, rather than their name:

match top -by_position

Matching Objects of Black Box Instances

This section describes the match commands for matching objects of an instance that was
declared a black box.

Usage

• Input ports

in \in \in[0] in[0] in [0] \in [0]

Input File Syntax
Match Files

FormalPro Reference Manual, 2018.1 213
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

match bbinput [options]
fullPortNameA fullPortNameB

match bbinput [options]
instNameA portNameA instNameB portNameB

• Output ports

atch bboutput [options] fullPortNameA fullPortNameB

match bboutput [options] instNameA
portNameA instNameB portNameB

• Bidirectional ports

match bbbidir [options]
fullPortNameA fullPortNameB

match bbbidir [options]
instNameA portNameA instNameB portNameB

• Black Box instance

match bbinst [options]
instNameA instNameB

You can substitute match with match_compl to perform complement matching between the
black box instance ports.

Arguments

• fullPortName — The name of a port object from a top-level module. This object must
appear in the scalar port file as an input.

• instName — A full-path instance name.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

• options — The options are described in the section “Match Command Options”, where -
force may be the most useful.

Examples

match bbinst \A.top.bb_instance.in1 \B.top.bb_inst.in1

Match Command Options

The option argument allows you further control of the explicit match command. The selected
defaults are conservative in that they allow a match to be made only when it is very likely to be
correct. This conservative choice is for matching vectored ports, in particular. When you want
to match two scalar ports, you should use the -force switch.

• -force — An argument that is useful when matching two scalar ports.

in \in \in[0] in[0] in [0] \in [0]

FormalPro Reference Manual, 2018.1214

Input File Syntax
Match Files

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The default behavior (not specifying -force) is conservative, which means a match is
made only when it is very likely to be the right one. You should use the default behavior
when matching vectored ports, in particular.

An alias for this command is -f.

This option applies only to the types: input, output, bidir, bbinput, bboutput, or
bbbidir.

• -by_name | -by_position — Matches port, at the module or instance level, by name or by
position.

-by_name — Designates two ports as potentially matchable if they have the exact same name.
Both ports must appear in the scalar port file as an input. This syntax is convenient when
manually matching by copying names directly from the unmatched report.

-by_position — Designates the nth port of the first module instance as potentially matchable to
the nth port of the second module instance. For example, if there are five ports in the first
module instance and three ports in the second module instance, there are three potentially
matchable ports.

This option applies only to the types: top or bbinst.

• -all | -partial — Specifies how many of the ports of both module instances must be
designated as potentially matchable for a match to occur.

-all — All ports must be designated as potentially matchable. Otherwise, none of the ports will
be matched, and the set of potentially matchable pairs is set to empty.

-partial — Only a subset of the ports must be designated as potentially matchable.

This option applies only to the types: top or bbinst.

• -by_bit_position | -by_bit_index — Specifies that bits are designated as potentially
matchable, dependent on their bit position or their bit index value.

-by_bit_position — Designates two bits as potentially matchable if they have the same lsb to
msb position.

-by_bit_index — Designates two bits as potentially matchable if they have the same index
value.

• -exact_width | -diff_width — Specifies that bits are designated potentially matchable,
dependent on the width of the two ports.

-exact_width — Designates that two bits are potentially matchable if the widths of the two ports
are equal. Otherwise, the set of potentially matchable bit pairs is set to empty.

Input File Syntax
Match Files

FormalPro Reference Manual, 2018.1 215
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

-diff_width — Designates that the set of potentially matchable bit pairs is not affected by the
width of the ports.

• -no_priors | -priors_ok — Specifies that bits are designated potentially matchable,
dependent on whether they have been matched previously.

-no_priors — Designates that none of the bits can be matched previously. Otherwise, the set of
potentially matchable bit pairs is set to empty.

-priors_ok — Designates that the set of potentially matchable bit pairs is not affected by
previous matching.

• -no_multiple | -multiple_ok — Specifies that bits are designated potentially matchable,
dependent on whether either bit of the pair has been matched previously.

-no_multiple — Designates that two bits are matched only if neither of them are already
matched.

-multiple_ok — Designates that two bits are matched regardless of whether one or both of them
are already matched.

FormalPro Reference Manual, 2018.1216

Input File Syntax
Black Box Files

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Black Box Files
A black box file enables you to black box and partition the design. The encapsulate commands
insert compare points at module boundaries to help partition the design. The dpAddGroup
command enables the grouping of multiple modules and the addition of compare points at the
boundaries of the group.

The -blackboxFile command line switch specifies which black box files get loaded.

blackbox, encapsulate, and noencapsulate . 216

dpAddGroup . 219

blackbox, encapsulate, and noencapsulate
FormalPro reads, but does not compile, a black-boxed object, with the exception of its port
definitions and declarations (Verilog) or its component declaration (VHDL). FormalPro
automatically infers and treats a black-boxed object if it does not exist but is instantiated in the
design. FormalPro ignores an object listed in the black box file if it does not exist in the design.

Encapsulation creates comparison targets on the ports of a module and isolates that module
from the rest of the design. Both the encapsulated module and the rest of the design are solved
but the connection between them is severed. This enables you to verify modules in place, thus
avoiding separate verification steps.

Note
FormalPro can only encapsulate user-defined modules. Modules that are read in from
libraries and modules that are generated by the RTL compiler cannot be encapsulated.

The encapsulate and blackbox commands can be applied to all modules or only to a specific
elaboration of a module. You can use a wildcard character (*) to specify a group of modules.
For example, to encapsulate all user-defined modules, use the following commands:

encapsulate A *
encapsulate B *

You can also use the noencapsulate command in the blackbox file. This command prevents
encapsulation of the specified modules. The noencapsulate command will always override
encapsulate command or the -encapsulateAll switch. You can place the noencapsulate
command either before or after the same module in the blackbox file and it will behave the
same.

Comments in a blackbox file start with the pound sign (#) character and end with a new line. All
other lines of this file must conform to the syntax shown under “Usage” below.

Input File Syntax
blackbox, encapsulate, and noencapsulate

FormalPro Reference Manual, 2018.1 217
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The encapsulate, noencapsulate, and blackbox commands all use the same syntax and take the
same arguments. The one exception: only the blackbox command takes the instance path
argument.

Syntax

blackbox {A | B} moduleName (Verilog format designs)

blackbox {A | B} libName.entName(archName) (VHDL format designs)

blackbox {A | B} moduleName-parameters

blackbox {A | B} entName(archName)

blackbox {A | B} entName

blackbox {A | B} libName-entName-archName

blackbox {A | B} libName-entName-generics-archName

blackbox {A | B} instance_path

blackbox instance_path

encapsulate {A | B} moduleName

encapsulate {A | B} libName.entName(archName)

encapsulate {A | B} moduleName-parameters

encapsulate {A | B} entName(archName)

encapsulate {A | B} entName

encapsulate {A | B} libName-entName-archName

encapsulate {A | B} libName-entName-generics-archName

Arguments

You can use wildcards (*) in all of the following arguments except for instance_path

• moduleName

An argument that specifies the name of the module to black box. This argument only
applies to Verilog format designs.

• libName

FormalPro Reference Manual, 2018.1218

Input File Syntax
blackbox, encapsulate, and noencapsulate

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

An argument that specifies the name of the VHDL library containing the entity to black
box. This argument only applies to VHDL format designs. This argument must be
followed by a period (.).

• entName

An argument that specifies the name of the entity to black box. This argument applies
only to VHDL designs. This argument must follow the libName argument and a period
(.).

• (archName)

An argument that specifies the name of the architecture to black box. This argument
applies only to VHDL designs. You must enclose this argument in parentheses and
specify it following the entName argument.

• instancePath

An argument that specifies the name of an instance path to a module. The format of the
instance path is the standard FormalPro format (for example, \A.top.inst1.inst2).
Wildcards are not permitted.

Note that the second character in an instance path indicates the design side and the A/B
side argument can be omitted. However, if you include it, it must match the design side
indicated in the path.

The design side argument is still allowed but it is optional. If it exists, it must match the
side indicated in the instance path.

Examples

Black box the modules ram128x16 and \RAM_#23 in design A (Verilog):

blackbox A ram128x16
blackbox B \RAM_#23

Black box the entity(architecture) foo(foo_rtl) in library mylib of design B (VHDL):

blackbox B mylib.foo(foo_rtl)

Using wildcards, black box multiple RAM modules with different names (RAM_128,
RAM_256, and RAM_address_decoder):

blackbox B RAM_*

Using the instance format for black box:

blackbox A \A.top.inst1.inst2
blackbox \B.top.insta.instb

Input File Syntax
dpAddGroup

FormalPro Reference Manual, 2018.1 219
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dpAddGroup
Include this datapath manual grouping command in a black box file to group together a
collection of design instances into a datapath, overriding the automatic grouping feature. When
any manual grouping is being used, no automatic groups are created.

Syntax

dpAddGroup {Tcl list of specification instance names} {matching implementation instance
name}

Arguments

• {Tcl list of specification instance names}

Specifies a Tcl list of specification instance names that must be fully qualified names.
This list is paired with the specified implementation instance.

The number of groups is unlimited.

When the -dataPath option is used without the dpAddGroup commands, the groups are
automatically made and are listed in the multarch.report. The syntax below can be
copied from the report to create a manual subset of the automatic results
(recommended).

• {matching implementation instance name}

Specifies the matching implementation instance name that is paired with specification
instance names.

Examples

The TCL list for design A contains instance names separated by spaces. That collection maps to
one datapath module in the design B which might be an example of a multiply-add.

dpAddGroup { \A.Dwidth_JV32.rtlc0M_297 \A.Dwidth_JV32.item2 }
{ \B.Dwidth_JV32.i_5_12 }

FormalPro Reference Manual, 2018.1220

Input File Syntax
Constraint Files

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Constraint Files
A constraint file allows you to apply constraints to objects within each design in order to reduce
processing time or to ignore or bypass aspects of the designs. You can load one or more
constraint files into FormalPro with the -constraintFile command line switch or by entering the
filenames in the Constraint field in the GUI.

The constraints are applied during the match stage of the equivalence checking session.

The Source command can be used in a constraint file to include arbitrary scripts that create
constraint commands. For more information, see “Constraint and Match File Scripts” on
page 206.

You can automatically create a constraint file from within the FormalPro GUI, either from the
Match Tool Window or from the Target List Window.

Tip
If you have a set of constraints used on multiple designs, you can place them in a master
constraint file and reference it by adding the following statement to your formalpro.ini file:

constraintFile = master.constr

The following topics describe commands that can be used in a constraint file:

assert . 220

complement. 221

duplicate and duplicate_compl . 223

eco_correspond. 227

force. 227

ignore. 231

no_match. 233

transparent . 234

tie and tie_compl . 234

multiplierarchitecture . 237

make_pi and make_po. 239

Don’t Care . 240

assert
Scope: Constraint file

Verifies a specified register or net in a design evaluates to a constant.

Input File Syntax
complement

FormalPro Reference Manual, 2018.1 221
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Upon receiving an assertion constraint, Formalpro creates an assertion comparison point (or
target) that checks that the function specified at the register or net evaluates to the constant. In
addition, it assumes that the assertion holds true for any logic fed downstream of the function,
such that any other comparison point or target fed by the asserted register or net will be driven
by the specified assertion constant value. This constraint is particularly useful for ensuring that
the constant optimizations performed by the synthesis tools are correct.

When assertion points are added, the formalpro log reports the number of assertion point
failures that were uncovered. For example, the following excerpt from a log file shows that 39
assertion failures were uncovered.

Comparison Summary
==================
Total number of comparison points: 34783

Number of Equivalent comparison points: 34744

Fed by unmatched net 44
Number of Different comparison points: 39

Assertion failures 39

All assertion comparison points are created with a target names that have a prefix consisting of
the string “ta” followed by a numeric value (for example, ta321123). Like design comparison
points, assertion comparison points can be viewed within the target table display and passed
into FormalPro's debug environment. However, they cannot be viewed in the design hierarchy
schematic browser.

Note
The behavior of the assertion constraint is somewhat similar to the force constraint except
that it creates a comparison point to check the assertion, whereas the force constraint does

not.

Syntax

assert register {0 | 1} <full_instance_path_name_of_register>

assert net {0 | 1} <full_instance_path_name_net>

Examples

assert register 0 \A.top.modInst1.shutdown_reg
assert net 0 \A.top.ucore.bist_controller.run_bist

complement
Scope: Constraint file

Specifies a complement polarity to registers or ports in your designs and libraries.

FormalPro Reference Manual, 2018.1222

Input File Syntax
complement

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, a positive polarity is assigned to all canonical names of the registers, with the
polarity of the register aliases based on that polarity. This constraint changes the default
behavior and assigns a negative polarity to the canonical name of the register in the database.

This constraint is most useful for library cells that use registers with Q-bar outputs, which
allows for easier matching.

Syntax

• Individual register

complement register fullRegName

• Every register in a module

complement module {A
| B} moduleName

• Top-level ports

complement input fullPortName

complement input {A
| B} portName

complement output fullPortName

complement output {A
| B} portName

complement bbinput fullPortName

complement bbinput
instName portName

complement bboutput fullPortName

complement bboutput instName
portName

Arguments

• fullRegName — A full-path register name.

• moduleName — The name of a module or entity.

• instName — A full-path instance name.

• fullPortName — The name of a port object from a top-level module. This object must
appear in the scalar port file as an input.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

in \in \in[0] in[0] in [0] \in [0]

Input File Syntax
duplicate and duplicate_compl

FormalPro Reference Manual, 2018.1 223
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

complement register \A.top.foo_reg
complement module A libcell_dff
complement input \A.top.clrn

duplicate and duplicate_compl
Scope: Constraint file

Identifies/resolves duplicate ports and registers.

The synthesis process can produce asymmetry in registers and ports between the A design and B
design. For example, for a single register in the A design, synthesis may generate two registers
in the B design, or for two registers in the A design, synthesis may generate a single register in
the B design.

During the match phase when FormalPro forms targets by matching registers/ports, this
asymmetry may result in unmatched objects. The duplicate command explicitly identifies
duplicated objects, so they can be resolved.

Consider the case in which two registers in B (foo and foo_dup) are created from a single
register in A (foo) shown in Figure 5-1.

Figure 5-1. Register Asymmetry Introduced by Synthesis

The following duplicate command in the constraint file facilitates matching by specifying that
in design B, foo_dup is a duplicate of foo:

duplicate B foo foo_dup

In the match phase FormalPro produces two targets that are checked for equivalence in the solve
phase.

FormalPro Reference Manual, 2018.1224

Input File Syntax
duplicate and duplicate_compl

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-2. Targets Produced by Duplicate Matching

Note
Redundant detection and register/port merging can also work in reverse. For example, if A
has two identical registers, then they are redundant and can be merged for area reduction

with a 'duplicate A' statement.

duplicate_compl is similar to duplicate, except it applies to duplicates that are the complement
of the register it duplicates. For example:

duplicate_compl B foo foo_dup

duplicate_compl identifies foo_dup in the B design as an inverted duplicate of foo.

The duplicate command syntax supports wildcards and various means of identifying duplicates
that are instantiated multiple times (see the examples below).

Syntax

duplicate [port] fullregister_portName1 fullregister_portName2

duplicate [port] {A | B} moduleName.register_portName1 moduleName.register_portName2

duplicate_compl [port] fullregister_portName1 fullregister_portName2

duplicate_compl [port] {A | B} moduleName.register_portName1
 moduleName.register_portName2

Arguments

• port

Specifies that both object names are ports. Duplicate ports can be primary inputs/outputs
or blackbox input/outputs. A duplicate command sets up a check to prove that the
duplicate is true along with facilitating the matching process where the removal of one
of the items in the revised netlist will not upset the match pairings. By default, object
names are assumed to be registers.

Input File Syntax
duplicate and duplicate_compl

FormalPro Reference Manual, 2018.1 225
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• fullregister_portName1, fullregister_portName2

Specifies the full register/port name. This format applies only to the registers/ports
specified by fullregister_portName1 and fullregister_portName2. Example (Verilog):

duplicate \B.ucbf_top.us.reg_buf0_20_ \
B.ucbf_top.u4.buf0[20]_DUPLICATE_I

• moduleName.register_portName

Specifies the name of the register/port and the parent module. This format applies to
every duplication of the register in all instantiations of the module. In this format, the
register name does not include the design indicators, so you must use the {A | B} option
in the command line. In this format, the previous example would look like:

duplicate B usbf_top.middle.buf0(20) usbf_top.middle.buf0_copy(20)

Examples

Example 1

In the following VHDL example, the register reg_current(2) is identified as a duplicate of
reg_current_state(1) in every instantiation of work-dma_engine_ent-dma_engine_arc in design
B.

duplicate B work-dma_engine_ent-dma_engine_arc.reg_current_state(2)
work-dma_engine_ent-dma_engine_arc.reg_current_state(1)

Example 2

The following example uses the fullregisterName format; it applies only to a single instantiation
of a duplicated register, in module fred, in design A. Register foo_dup is identified as a
duplicate of foo.

duplicate \A.top.fred.foo \A.top.fred.foo_dup

Example 3

The following example uses wildcard matching. All registers in module fred that match foo(*)
are identified as duplicates of fred(0).

duplicate \A.top.fred.foo(0) \A.top.fred.foo(*)

Example 4

In the following example, for every instantiation of module fred in design A, all registers that
match foo(*) are identified as duplicates of fred(0).

duplicate A fred.foo(0) fred.foo(*)

FormalPro Reference Manual, 2018.1226

Input File Syntax
duplicate and duplicate_compl

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 5

The following examples demonstrate how the complement characteristic propagates when the
duplicate, complement, and duplicate_compl commands are used together. NOTE: The order
of commands affect the propagation of complement characteristics.

Assume you need to identify a set four registers: 2 duplicates and 2 duplicate complements
(reg1, reg2, ~reg3, ~reg4).

The following sequence of commands show the least error-prone way to accomplish the desired
set: first use the duplicate command to create the set of duplicates, then identify the
complement registers in the set.

duplicate \A.top.reg1 \A.top.reg2 #(reg1, reg2)
duplicate \A.top.reg1 \A.top.reg3 #(reg1, reg2, reg3)
duplicate \A.top.reg1 \A.top.reg4 #(reg1, reg2, reg3, reg4)
complement register \A.top.reg3 #(reg1, reg2, ~reg3, reg4)
complement register \A.top.reg4 #(reg1, reg2, ~reg3, ~reg4)

The following sequence of commands illustrate the unexpected results when reg3 and reg 4
are first identified as complements, then subsequently identified as duplicates of a register. The
complement characteristics assigned in the first two commands are overridden by the last two
duplicate commands. In the end, none of the registers in the set are complements.

complement register \A.top.reg3 # ~reg3
complement register \A.top.reg4 # ~reg4
duplicate \A.top.reg1 \A.top.reg2 # (reg1, reg2)
duplicate \A.top.reg1 \A.top.reg3 # (reg1, reg2, reg3)
duplicate A.top.reg1 \A.top.reg4 # (reg1, reg2, reg3, reg4)

Command 1 tells FormalPro, “in the match phase, match the complement of reg3 (A design)
with reg 3 (B design). But command 3 contradicts this matching, implicitly matching reg3 (A
design) with reg1 (B design). In effect command 3 says, “in A design reg3 is a duplicate of reg1,
therefore match reg3 in the A design with reg1 in the B design”.

The following sequence of commands yields the desired results using the duplicate_compl
command:

duplicate_compl \A.top.reg1, \A.top.reg3 #(reg1, ~reg3)
duplicate \A.top.reg1 \A.top.reg2 #(reg1, reg2, ~reg3)
duplicate \A.top.reg3 \A.top.reg4 #(reg1, reg2,~reg3, ~reg4)

The following sequence of commands also yields the desired results using the duplicate_compl
command:

duplicate_compl \A.top.reg1 \A.top.reg3 #(reg1, ~reg3)
duplicate_compl \A.top.reg2 \A.top.reg4 #(reg2, ~reg4)
duplicate \A.top.reg1 \A.top.reg2 #(reg1, reg2, ~reg3, ~reg4)

Input File Syntax
eco_correspond

FormalPro Reference Manual, 2018.1 227
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 6

The following command sets up duplicate ports for verification:

duplicate port \A.top.Out_port \A.top.In_port
#(Prove that Out_port is equivalent to In_port, which is a pass-thru)

Related Commands

For a similar function that relates to ports, see the “tie and tie_compl” on page 234.

eco_correspond
Scope: Constraint file

Specifies that a pair of signals are equivalent points.

A functional correspondence is a pair of signals that define equivalent points in the ECO and
original layout design failing regions (cones), such that the two designs are functionally
equivalent if all these cuts are taken as primary inputs. Essentially, these cuts bound the patch
region on the “output side” of the ECO logic.The FormalPro tool provides robust techniques to
automatically find appropriate functional correspondence cuts. However, in certain cases user
intervention can provide additional correspondence hints as constraints to the tool. These hints
help in the quality of the eventually generated ECO patch.

Syntax

• eco_correspond fullNetName fullNetName

Examples

eco_correspond \A.control_operation.n_7 \B.control_operation.n_12

force
Scope: Constraint file

Forces objects to a specified value of either 1 or 0.

By forcing an object you alter how the internal databases are compiled (constant propagation
and register pruning). During the solve stage, FormalPro assigns the value to the specific object.
The forced objects become "benign" in FormalPro logs and report status.

Forcing Objects of Top-level Modules

Syntax

• Input ports

force input {0 | 1} fullPortName

FormalPro Reference Manual, 2018.1228

Input File Syntax
force

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

force input {0 | 1} {A | B}
portName

• Bidirectional ports

force bidir {0 | 1} {A |
B} portName

Arguments

• fullPortName — The name of a port object from a top-level module. This object must
appear in the scalar port file as an input.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

Examples

force input 0 A test_en
force input 0 \B.top.scan_in

Forcing Objects of Black Box Instances

Syntax

• Output ports

force bboutput {0 | 1} fullPortName

force bboutput {0 | 1} instName
portName

• Bidirectional ports

force bbbidir {0 | 1}
fullPortName

force bbbidir {0 | 1}
instName portName

• Every output of a black box instances

force bbinst {0 | 1}
instName

Arguments

• instName — A full-path instance name.

• fullPortName — The name of a port object from a black box instance. This object must
appear in the scalar port file as an input.

in \in \in[0] in[0] in [0] \in [0]

Input File Syntax
force

FormalPro Reference Manual, 2018.1 229
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• portName — The name of a black box instance port. This variable can appear as
follows:

Examples

force input 0 \B.top.scan_in

Forcing Objects of Black Box Modules

Syntax

• Output ports

force o/bbm {0
| 1} {A | B} bbModuleName portName

• Bidirectional ports

force b/bbm {0
| 1} {A | B} bbModuleName portName

• Every output of a black box module

force bbmodule {0 | 1}
{A | B} bbModuleName

Arguments

• bbModuleName — The name of a black box module or entity.

• portName — The name of a black box module port. This variable can appear as follows:

Examples

force o/bbm 0 B ram16x32 input
force bbmodule 0 A ram

Forcing Registers

Syntax

• Individual register

force register {0 | 1} fullRegName

• Every register in a specific instance

force instance {0 | 1} instName

• Every instance of a defined register

in \in \in[0] in[0] in [0] \in [0]

in \in \in[0] in[0] in [0] \in [0]

FormalPro Reference Manual, 2018.1230

Input File Syntax
force

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

force register_def {0 | 1}
{A | B} moduleName definedName

• Every register in a specific module

force module {0 | 1} {A |
B} moduleName

Arguments

• fullRegName — A full-path register name. You can specify wildcards (*) when using
this argument.

• instName — A full-path instance name.

• moduleName — The name of a module or entity.

• definedName — The name of a defined register.

Examples

force register 1 \A.top.cpu.reg1
force instance 0 \A.top.cpu.I0
force register_def 1 B cpu foo_register
force module 0 B cpu

Forcing an Individual Net

Syntax

• Individual net

force net {0 | 1} fullNetName

Arguments

• fullNetName — A full-path net name.

Examples

force net 0 \A.top.cpu.ci

Forcing Multiple Net Instances

Syntax

• Force a net defined in a module or library cell, in all instances of the module or library
cell in a given design

force module_net {0 | 1} {A
| B} moduleName netName

Arguments

• moduleName — The name of a module or entity

• netName — A local name of a net defined in moduleName

Examples

force module_net 0 B DFF1 notify
force module_net 1 A mylib.foo(foo_rtl) vcc_net

Input File Syntax
ignore

FormalPro Reference Manual, 2018.1 231
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ignore
Scope: Constraint file

Specifies objects to ignore.

These objects maintain their real/benign status in FormalPro reports and log files.

Ignoring Objects of Top-level Modules

Syntax

• Output ports

ignore output fullPortName

ignore output {A|B} portName

• Bidirectional ports

ignore bidir {A|B} portName

Arguments

• fullPortName — The name of a port object from a top-level module. This object must
appear in the scalar port file as an input.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

Examples

ignore output B scanout
ignore output \B.top.scan_out

Ignoring Objects of Black Box Instances

Syntax

• Input ports

ignore bbinput fullPortName

ignore bbinput {A | B} instName
portName

• Bidirectional ports

ignore bbbidir fullPortName

ignore bbbidir {A | B} instName
portName

• Every input of a black box instances

ignore bbinst instName

in \in \in[0] in[0] in [0] \in [0]

FormalPro Reference Manual, 2018.1232

Input File Syntax
ignore

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Arguments

• instName — A full-path instance name.

• fullPortName — The name of a port object from a black box instance. This object must
appear in the scalar port file as an input.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

Examples

ignore bbbidir \A.top.inst1 data

Ignoring Objects of Black Box Modules

Syntax

• Input ports

ignore i/bbm {A |
B} bbModuleName portName

• Bidirectional ports

ignore b/bbm {A |
B} bbModuleName portName

• Every input of a black box module

ignore bbmodule {A | B} bbModuleName

Arguments

• bbModuleName — Name of a black box module or entity.

• portName — Name of a black box module port. This variable can appear as follows:

Examples

ignore bbmodule A rom4k8_comp

Ignoring Registers

Syntax

• Individual register

ignore register fullRegName

• Every register in a specific instance

in \in \in[0] in[0] in [0] \in [0]

in \in \in[0] in[0] in [0] \in [0]

Input File Syntax
no_match

FormalPro Reference Manual, 2018.1 233
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ignore instance instName

• Every instance of a defined register

ignore register_def {A | B}
moduleName definedName

• Every register in a specific module

ignore module {A
| B} moduleName

Arguments

• fullRegName — A full-path register name. You can specify wildcards (*) when using
this argument.

• instName — A full-path instance name.

• moduleName — The name of a module or entity.

• definedName — The name of a defined register.

Examples

ignore register \A.top.I0.reg1
ignore module A cpu

no_match
Scope: Constraint file

Prevents a specified register from being matched to another during verification.

The no_match command supersedes entries in a match file. For more information on match
files, see “Match Files” on page 210.

Syntax

• Register

no_match register fullRegName

Arguments

• fullRegName — A full-path register name. You can specify wildcards (*) when using
this argument.

Examples

no_match register \A.top.foo_reg

FormalPro Reference Manual, 2018.1234

Input File Syntax
transparent

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

transparent
Scope: Constraint file

Converts registers in a design into buffers.

Use this command to compare designs with pipelined circuitry or for designs where latches
occur due to gate-clocking. FormalPro reports transparent registers as “benign” unmatched
objects.

Making Registers Transparent

Syntax

• Individual register

transparent register fullRegName

• Every register in a specific instance

transparent instance instName

• Every instance of a defined register

transparent register_def {A
| B} moduleName definedName

• Every register in a specific module

transparent module {A
| B} moduleName

Arguments

• fullRegName — A full-path register name. You can specify wildcards (*) when using
this argument.

• instName — A full-path instance name.

• moduleName — The name of a module or entity.

• definedName — The name of a defined register.

Examples

transparent register \A.top.cpu.reg1
transparent instance \A.top.cpu
transparent module A mult
transparent register_def A cpu_def ir

tie and tie_compl
Scope: Constraint file

Shorts two or more ports together, where tie applies to ports that have the same logical value,
and tie_compl applies to ports that have opposing logical values.

Input File Syntax
tie and tie_compl

FormalPro Reference Manual, 2018.1 235
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This functionality is useful for designs that have non-overlapping clock systems, as well as
LSSD designs using a Master/Slave configuration.

Syntax

Note
There are additional conventions that must be followed to prevent errors in the match stage.
For details, see the examples in this section.

• Input ports

tie input fullPortName1 fullPortName2

tie_compl input fullPortName1 fullPortName2

• Bidirectional ports

tie bidir fullPortName1
fullPortName2

tie_compl bidir fullPortName1
fullPortName2

• Output ports of black box instances

tie bboutput
fullPortName1 fullPortName2

tie_compl bboutput fullPortName1 fullPortName2

• Top-level primary output to top-level primary input

tie fullPortNameInput fullPortNameOutput

tie_compl fullPortNameInput fullPortNameOutput

Use this when verifying a sub-module of a design where an output port of a module
feeds back into the same module as an input port. The output port is considered as a
matchable comparison point, but not the input port.

Arguments

• fullPortName — The name of a port object from a top-level module. This object must
appear in the scalar port file as an input.

• portName — The name of a top-level port on a design. This variable can appear as
follows:

in \in \in[0] in[0] in [0] \in [0]

FormalPro Reference Manual, 2018.1236

Input File Syntax
tie and tie_compl

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

In this example the first statement ties together two inputs in the A-design, the second ties
together the corresponding inputs in the B design. FormalPro will create a solve target by
matching the tied ports in the A-design with the tied ports in the B-design.

tie input \A.top.dclk_one_ram \A.top.dclk_one
tie input \B.top.dclk_one_ram \B.top.dclk_one

Note that in both tie statements, dclk_one_ram is on the left. This convention must be followed
to facilitate matching. If the order is reversed in the second statement, as shown below,
Formalpro reports errors during the match phase.

tie input \A.top.dclk_one_ram \A.top.dclk_one
tie input \B.top.dclk_one \B.top.dclk_one_ram

This next example is similar to the first example, except the tied ports are complements of each
other.

tie_compl input \A.top.dclk_one_a \A.top.eclk_one_a
tie_compl input \B.top.dclk_one_a \B.top.eclk_one_a

The next example shows a situation where a port named port1 exists in both the A-design and
B-design. Four input ports named port1_ofn1, port1_ofn2, port1_ofn3, and port1_ofn4 exist
only in the B-design.

In the example, each of the four statements tie one of the four ports to port1. The intent is that
this group of tied ports in the B-design will be matched with port1 in the A-design.

Note that the statements maintain the required parallel structure; port1 is on the left side in each
statement. Also note that port1 is the only port that exists in both designs. Putting port1 on the
left side in each statement makes it the “identifier” of the tied group, and enables FormalPro to
correctly match port1 in the A-design with the “tied” group of ports on the B-side.

tie input \B.top.port1 \B.top.port1_ofn1
tie input \B.top.port1 \B.top.port1_ofn2
tie input \B.top.port1 \B.top.port1_ofn3
tie input \B.top.port1 \B.top.port1_ofn4

The next example shows how tie an input port to an output port.

tie \A.top.in[0] \A.top.out[1] //connect out[0] to in[1]

Related Commands

For similar commands that apply to registers, see “duplicate and duplicate_compl” on page 223.

Input File Syntax
multiplierarchitecture

FormalPro Reference Manual, 2018.1 237
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

multiplierarchitecture
Scope: Constraint file

Specifies the architecture of the logic generated for a specific multiplier instance when
compiling RTL for an RTL-to-gate equivalence check.

This can improve the solve efficiency of multipliers by enabling you to match the logic of
multiplier generated from the RTL to the logic of the gate-side multiplier.

In the initial run the compiler determines which multiplier logic to use based on what it finds in
the RTL source, and produces a Multiplier Architecture report.

The report lists every multiplier instance and shows the architecture of the logic generated by
complier. It shows this using a syntactically correct multiplierarchitecture constraint that would
generate the same results (see Figure 5-3)

If a given multiplier is taking too long to solve, you can try using a different architecture:

1. Find the multiplier instance in the report.

2. Copy the constraint from the report into the constraint file, then edit the syntax as
desired.

3. Restart the run. The first time you change an multiplier architecture, restart at the
compile phase. Thereafter when you add or revise a multiplierarchitecture constraint,
recompilation is not necessary — you can restart at the match or constraint phase.

Figure 5-3. Format of an entry in the Multarch report.

The report is located here:

formalpro.cache/reports/multarch.report

Syntax

multiplierarchitecture instance instancePath arch[_adder][_swap]

FormalPro Reference Manual, 2018.1238

Input File Syntax
multiplierarchitecture

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Arguments

• instancePath — identifies the specific multiplier affected by this command.

• arch — compiles multipliers with a specified architecture. Options include:

o wall — Wallace tree architecture.

o csa — Carry-save Adder architecture.

o str — Pipelined Wallace tree architecture.

o nbw — Non-Booth Wallace architecture.

o mcarch — architecture of Synopsys Module Compiler. There is no associated adder
type.

o csmult — Synopsys DesignWare multiplier. You must specify -strategy EXTREME
if you use this argument.

o pparch — Same as csmult (see above).

• adder — specifies the final adder architecture within the multiplier. Options include:

o cla — Carry Look Ahead adder (default; if using csa)

o rpl — Ripple adder

o csel — Carry Select adder

o csm — Conditional Sum Module adder (default; if using wall)

o bk — Brent Kung adder (default; if using nbw)

• swap — specifies the swap order of the operands. Options include:

o axb — compile the operands as specified in the RTL (default)

o bxa — swap the order of the operands before compiling

Examples

The following example specifies that a multiplier instantiated in \A.top.mult should be compiled
with the Non-booth Wallace architecture with a Carry-look-ahead adder with the default swap
order.

multiplierarchitecture instance \A.top.mult.mult_5 nbw_cla_axb

See Also

For an overview of how multiplier architectures are determined, see “Specifying Multiplier
Architectures” in the FormalPro User’s Manual

Input File Syntax
make_pi and make_po

FormalPro Reference Manual, 2018.1 239
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

See also the “-multiplierArchitecture” command line switch.

make_pi and make_po
Scope: Constraint file

Splits combinational feedback loops (cycles).

If your design contains combinational feedback loops (cycles), FormalPro reports them in the
cycles.report file in the reports directory of the FormalPro cache.

You can break these cycles for verification by using the make_pi and make_po commands.
These commands split the feedback net into a primary input and a primary output.

To determine which net is causing the cycle, refer to the cycles.report file. You should notice a
group of net names under the heading “Cycle number”; the nets listed here are involved in the
cycle:

#Cycle number cc1 drives target tf161d state = Unsolved

MCP \A.top.i3.tja_it
MCP \A.top.i3.tja_it

The net listed is a good candidate for correcting the loop. Based on your knowledge of the
design, you may know which net is causing the cycle and, therefore, do not need to analyze the
report to determine the responsible net. Use this net name as the netName argument in the
make_pi/make_po commands to determine if the combinational cycle is no longer reported by
FormalPro.

Note
Use the formalpro -restart match command to restart a run after creating or altering a cycle
breaking constraint. See -restart.

You can view a graphical representation of a combinational cycle within the FormalPro debug
tool by using the showschematic command on a target that is classified as “fed by cycle”.

Syntax

make_pi netName

make_po netName

Arguments

• netName

Variable that must be a complete path of a net instance name.

FormalPro Reference Manual, 2018.1240

Input File Syntax
Don’t Care

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

For example, if the cycle report lists the net \A.top.sub.status twice in one cycle, and “MCP”
(matched cut point) precedes both occurrences, you should add the following to the constraint
file:

make_pi \A.top.sub.status
make_po \A.top.sub.status

You will also need to write similar commands for the corresponding net in the B design. For this
example, assume that its name is similar to the name of the net in the A design.

make_pi \B.top.sub.status
make_po \B.top.sub.status

Figure 5-4 shows the results of applying the constraints to the A design. The results are similar
for the B design.

Figure 5-4. Example: Cycle Breaking

Don’t Care
You can instruct FormalPro on how to treat don’t care situations within your designs.

Scenarios where you would possibly use these don’t care constraints are:

• Performing hierarchical verification on a sub-module when you know that certain input
conditions will never occur.

• Specifying onehot or onecold FSM encoding schemes.

Input File Syntax
Don’t Care

FormalPro Reference Manual, 2018.1 241
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Specifying detailed information on how to translate an RTL design containing don’t care
conditions.

Key terms used for this section:

• Group — refers to the group constraint and all of its arguments and variables.

• Signals — objects within the design, recognized by FormalPro, including input ports,
registers, and nets.

• Condition — specifies vectors relevant to the signals listed in a group.

There are three types of constraint commands, all of which are dependent on each other.

• Specifying Groups — specifies a group of signals, based on which FormalPro could
create a don’t care.

• Specifying Conditions — specifies the conditions, under which a target is defined as
don’t care.

• Specifying Targets — allows you to instruct FormalPro to create a don’t care, dependent
on the referenced Conditions and Groups.

To restart a run after altering a don’t care constraint, use the -restart constraint option.
FormalPro determines whether it should restart at the compile or match stage, based on the
contents of the constraint file.

Specifying Groups

Use the group command to specify a group of signals (inputs, registers, or modules), to which a
set of conditions could apply.

Usage

group {inputs | registers} groupName
signal
[…]
endgroup

group groupName
{r | i | n} signal
[…]
endgroup

group module {A | B} moduleName groupName
moduleSignal
[…]
endgroup

FormalPro Reference Manual, 2018.1242

Input File Syntax
Don’t Care

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Arguments

• inputs | registers

An argument that specifies that the signals listed between the group and endgroup
keywords are inputs or registers, respectively.

• groupName

A variable that specifies a name assigned to the group of ports or registers listed between
the group and endgroup keywords. The dc, onehot, and onecold commands will
reference this name.

• signal

A variable that must be a fully specified path name to a scalar port or scalar register.
This variable can also be a register alias, as shown in the Match tool. FormalPro
considers the first signal listed as the LSB, and the last signal as the MSB. You can only
specify one signal per line within a group constraint.

• r | i | n

Arguments that allow you to specify a mixture of signals in one group command. Each
argument must be followed by only one signal, and only one argument/variable pair is
allowed per line.

o {r | register} — specifies that the corresponding signal is a register.

o {i | input} — specifies that the corresponding signal is an input port.

o {n | net} — specifies that the corresponding signal is a net.

• module

An argument that specifies that the moduleSignals listed between the group and
endgroup keywords are inputs, nets, or registers within moduleName.

• A | B

An argument that specifies that moduleName is in a particular design.

• moduleName

A variable that must be a name of a module within the specified design.

• moduleSignal

A variable that must be a path name to a scalar port or scalar register within the specified
moduleName. FormalPro considers the first moduleSignal listed as the LSB. You can
only specify one moduleSignal per line within a group constraint.

Input File Syntax
Don’t Care

FormalPro Reference Manual, 2018.1 243
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Specifying Conditions

These commands allow you to specify the conditions that must exist for a given group of
signals, for FormalPro to create a don’t care.

Three constraint commands apply to this category:

• dc — specifies a collection of conditions that could apply to a specific groupName (used
in the group constraint).

• onehot — specifies a groupName as a one hot.

• onecold — specifies a groupName as a one cold.

Syntax

dc dontCareName groupNamecondition[…]enddc

onehot dontCareName groupName

onecold dontCareName groupName

Arguments

• dontCareName

A variable that specifies a name assigned to the group of conditions listed between the
dc and enddc keywords, or assigned to onehot or onecold constraints. The applydc and
applydc_compl commands will reference this name. When you use the onehot
constraint, you should reference it’s dontCareName in an applydc_compl command.

• groupName

A variable that references the name of a specific group, to which the condition is
applied.

• condition

A collection of binary or hex assignments. The allowable formats, as well as examples,
are as follows:

o binary format — 000000

o binary format with don’t care notation — 0-010-

o hex format — 042F

o hex format with don’t care notation — 0-2-

You can only specify dash characters (-) for don’t care conditions in both binary and hex
format assignments. You can specify more than one condition for a dc constraint, but
can only specify one condition per line. FormalPro reads the condition with the LSB on
the left. The length of the condition, should match the number of signals in groupName.

FormalPro Reference Manual, 2018.1244

Input File Syntax
Don’t Care

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Specifying Targets

These commands specify which target is to be defined as a don’t care based on the information
in a specific dontCareName.

There are two constraint commands for specifying targets:

• applydc — applies a don’t care to a target when a valid condition is listed in the
corresponding dc constraint.

• applydc_compl — applies a don’t care to a target when a valid condition is not listed in
the corresponding dc constraint.

FormalPro applies a don’t care to any target that depends on any signal in a group identified by
dontCareName. This constraint, when specified without the register variable, could cause
FormalPro to unintentionally apply don’t care conditions to some targets and mask real
differences.

If the target is a register, FormalPro applies a don’t care to the data and q-output pins (only if
you specified -diffOnQ), by default. You can specify other pins to receive a don’t care through
the use of optional arguments. If you specify a terminal that has no path to any signal of the
referenced group, FormalPro will still apply a don’t care to that terminal.

FormalPro produces a report listing all targets to which don’t care conditions are applied:
dontCare.index in the outputFiles directory of the FormalPro cache.

When you need to specify many applydc or applydc_compl commands, you should refer to the
section “Constraint and Match File Scripts”.

Syntax

applydc dontCareName [register]
[-r] [-s] [-d] [-c] [-q]

applydc_compl dontCareName
[register] [-r] [-s] [-d] [-c] [-q]

Arguments

• dontCareName

A variable that references the name of a specific dc condition group, against which the
target is checked.

• register

An optional variable that must be a fully-specified pathname to a scalar register. This
command allows you to explicitly specify a register for don’t care treatment. If the
conditions and signals referenced by this command apply to the specified register,
FormalPro, by default, applies a don’t care to the data and q-output pins of the register.

Input File Syntax
Don’t Care

FormalPro Reference Manual, 2018.1 245
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -r -s -d -c -q

These optional arguments instruct FormalPro to apply don’t cares to specific pins of
registers affected by the referenced conditions and signals. If you do not specify any of
these switches, FormalPro, by default, sets the -d and -q switches.

Examples

Assume that in the modules shown in Figure 5-5, \A.foo.bar[outD] is equivalent to \
B.foo.bar[outD] only when the inputs to the modules are all “1”, all “0”, or inA and inB are “0”
and inC is “1”:

Figure 5-5. Advanced Constraint Example

-r reset pin -s set pin

-d data pin -c clock pin

-q q-output pin

FormalPro Reference Manual, 2018.1246

Input File Syntax
Don’t Care

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can instruct FormalPro to only verify the equivalence in these cases by adding the
following commands to your Constraint file:

Specify a group of signals in design A that must be set for
the scenario to occur. LSB top... MSB bottom.

group in_ABC

i \A.foo.bar.inA
i \A.foo.bar.inB
i \A.foo.bar.inC

endgroup

Specify the conditions that apply to the signals in a
specific ‘group’.
(left column represents ‘inC’ and right column ‘inA’).

dc valid_states in_ABC

111
000
100

enddc

applydc_compl valid_states

Input File Syntax
Configuration Files

FormalPro Reference Manual, 2018.1 247
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Configuration Files
A configuration file is a special type of constraint file processed during RTL compilation that
modifies the internal database before the matching phase. Configuration files are specified with
the -configFile command option.

For more information, see -configFile.

To apply any changes to a configuration file, the session must be restarted from the “Compile”
phase.

The following commands can be used in a configuration file:

encode . 247

partial_sum_checker . 249

port_direction. 250

encode
Scope: Configuration file

Specifies encoding of state machines. Ensures that state machines in A-side RTL conform to the
encoding used in the B-side netlist.

When an encoding is specified that does not specify all possible states, FormalPro checks the A
design-side (RTL) to ensure that the unspecified states cannot occur. If one of the states can
occur, an assertion failure is reported. Shown below is an encode command generated by
transFVI based on output from a Precision synthesis run. Note that only three of the four
possible states are defined. Precision is declaring that the fourth state (10) cannot occur and that
it will base optimizations on that assumption.

encode -module fsm_encoding -reference cst_reg(1) cst_reg(0) -translated
cst_reg(1) cst_reg(0) {
 00 : 00
 01 : 01
 11 : 11

Given this encode command, FormalPro checks to see if the invalid state “10” could occur on
the A design-side. (The pre- and post-encoded states are the same in this example, but they may
differ.)

If an assertion failure is reported in the log file, go to the Detailed Comparison report to
determine if it is encode-generated. If it is, the entry in the report gives you the information you
need debug the problem: the path to the module in the RTL source where the FSM is defined
and a register name that will enable you to find the encode command in the configuration file.

FormalPro Reference Manual, 2018.1248

Input File Syntax
encode

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-6. Assertion Failure in the Detailed Comparison Report.

To resolve an encode-generated assertion failure:

• Find the encode statement by searching the configuration file for the register named in
the Detailed Comparison report and review the encode statement; fill-in any missing
codes.

• Review the synthesis tool settings and configuration.

• Review the RTL source to confirm that the RTL input to FormalPro is the same RTL
input to the synthesis tool.

If you decide everything is okay as is, you can disable the encode-generated assertion failure by
adding -noassert to the encode command in the configuration file.

Syntax

encode -noassert -module moduleName -reference registerList -translated registerList
{encodingMap}

Note
Line breaks are allowed only between the curly braces {}, to delineate items in the encoding
map. The line continuation backslash (\) is not supported.

Arguments

• -noassert

(optional) disable assertion test for missing states in encoding table.

• -module moduleName

were moduleName is the A-side module containing the state machine to be encoded.

VHDL module names can be specified in various formats:

o libName.entName(archName)

o entName(archName)

Input File Syntax
partial_sum_checker

FormalPro Reference Manual, 2018.1 249
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o entName

o libName-entName-archName

o libName-entName-generics-archName

The following example specifies the default library work, entity xdr_tmg, and
architecture rtl:

-module work-xdr_tmg-rtl

If you have trouble with the correct specification of a VHDL module name, look it up in
the files in the FormalPro cache after compilation (.cache/internal/T/A/NET).

• -reference registerList

where registerList is a space delimited list of the registers in A-side RTL-level state
machine.

• -translated registerList

where registerList is a space delimited list of the registers in B-side, gate-level state
machine.

• {encodingMap}

where encoding map is a space delimited list of A-side/B-side mapping of reachable
states.

Example

Note
Line breaks are allowed only between the curly braces {}. The example below may display
line breaks due to the page-width limits and are not valid in an actual command.

In the following example, the RTL specifies a six-bit state machine and in the B-side netlist it is
optimized to 2-bits:

encode -module dflop -reference reg_mystate(5) reg_mystate(4)
reg_mystate(3) reg_mystate(2) reg_mystate(1) reg_mystate(0) -translated
reg_mystate(1) reg_mystate(0) {
010111 : 00
101011 : 01
001101 : 10}

partial_sum_checker
Scope: Configuration file

Specifies a module with partial-sum outputs. Adds sum-checking logic to verify partial sum
outputs.

FormalPro Reference Manual, 2018.1250

Input File Syntax
port_direction

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The two partial sum output ports and the name of the SystemVerilog/Verilog module or VHDL
entity/architecture must be supplied.

The -partialSumCheck option must also be specified for the FormalPro run. Module names that
contain "DW02_multp" or "DW02_tree" are handled automatically when -partialSumCheck is
used.

Syntax

partial_sum_checker {-reference
| -translated} <module_entity/architecture>
<outName0>
<outName1>

Arguments

• -reference

Specifies a module in the A design.

• -translated

Specifies a module in the B design.

• module or entity/architecture

Specifies the name of the Verilog module or VHDL entity/architecture to add the sum
checker logic to. Verilog escaped names and VHDL extended identifier syntax is
supported.

VHDL Entity/architectures should have the form: <library>.<entity>(<arch>)

• outName0

Specifies the first output port to sum.

• outName1

Specifies the second output port to sum.

Examples

The following example adds sum checking logic to outputs p0 and p1 of the share.multp_6x6
module in design A and to the multp_6x6_param module in Design B.

partial_sum_checker -ref share.multp_6x6 p0 p1
partial_sum_checker -tra multp_6x6_param p0 p1

port_direction
Scope: Configuration file

Input File Syntax
port_direction

FormalPro Reference Manual, 2018.1 251
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Specifies the direction of a port for RTL compilation.

It applies to top level and blackbox ports, and typically switches a bidirectional port to an input
or an output port.

Syntax

port_direction {-reference
| -translated } {Input | Output } <portName>

Arguments

• -reference

Specifies a module in the A design.

• -translated

Specifies a module in the B design.

• Input | Output

The direction of the port.

• portname

The name of the port.

Examples

The flowing example specifies the direction of two ports in the A design: data_out1 as an output
and data_input as an input:

port_direction -reference Output data_out1
port_direction -reference Input data_input

FormalPro Reference Manual, 2018.1252

Input File Syntax
port_direction

May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix A
FormalPro Library Compiler

You can use the FormalPro Library Compiler (fplibcomp) to compare two libraries or
precompile libraries to a Verilog format for use with FormalPro.

You can use fplibcomp to compare libraries in the following formats:

• Verilog

• FastScan ATPG

• Synopsys Liberty

Comparing Libraries . 253

Precompiling Libraries . 255

Simple Verilog Format . 264

Comparing Libraries
The FormalPro Library Compiler allows you to verify the equivalency of two different libraries.
You may want to compare libraries if you suspect a problem between two different revisions of
the same library or if you want to make sure that the functionality described in two different
formats of the library is equivalent. The following three-step procedure uses the FormalPro
Library Compiler and FormalPro to perform the comparison.

Procedure

1. Use fplibcomp to precompile one of the libraries with the command line argument, -
netlist netfilename. This generates a Verilog netlist that contains a single module
instantiating all the modules of the library.

2. Perform Step 1 on the other library.

3. Use formalpro to compare the netlists created during the first two steps.
FormalPro Reference Manual, 2018.1 253
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
Comparing Libraries
Examples

For example, to compare a Verilog library in a file called libVlog.v against a library in a Mentor
Graphics FastScan ATPG format that is in file libAtpg.v, enter the following commands:

fplibcomp -vlib libVlog.v \
-outputFile pre_comp_libVlog.v \
-netlist netlist_libVlog.v \
-cache fplibcomp_A.cache

fplibcomp -alib libAtpg.atpg \

-outputFile pre_comp_libAtpg.v \
-netlist netlist_libAtpg.v \
-cache fplibcomp_B.cache

formalpro -a netlist_libVlog.v -v pre_comp_libVlog.v \

-b netlist_libAtpg.v -v pre_comp_libAtpg.v

FormalPro recognizes that each design (netlist_libVlog.v and netlist_libAtpb.v) contains a
single module called MGC_GENERATED_NETLIST and produces a report called
library_comparison.report in the report directory. This report provides an overview of the
equivalency of the two libraries, including modules that are:

• Equivalent or different

• Declared as blackboxes

• Found in only one design

• Unsolved

You can also read the other reports from the formalpro.cache to analyze the comparison of the
libraries. For example, the detailed comparison report indicates the comparison points that make
a library cell in design A different from the same cell in design B. The unmatched and detailed
comparison reports list the reasons why some modules could not be solved. However, to find
why a particular library module became a black box, use the reports produced by fplibcomp in
the first two steps of the procedure.
FormalPro Reference Manual, 2018.1254
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
Precompiling Libraries
Precompiling Libraries
To precompile libraries, use the following command line syntax (assuming Verilog libraries).

fplibcomp -vlib originalDir -outputdir newDir

where originalDir is the location of the Verilog libraries that you want to precompile, and
newDir is where fplibcomp should create the precompiled libraries.

When you use a precompiled library with the formalpro executable, be sure to use the -y switch
if you created a directory (-ouputDir) or the -v switch if you created a file (-outputFile).

fplibcomp . 256
FormalPro Reference Manual, 2018.1 255
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
fplibcomp
Executable that compiles design libraries for FormalPro.

Usage

fplibcomp library_format {-outputDir dir Pathname | -outputFile filePathname}
[-netlist netlistName] [globalOptions]

library_format
{-alib[F] | {-slib[F]} | [-vlib[F]} {file | fileList}

globalOptions
[-cache cacheDir] [-mod moduleName] [-f commandFile] [-blackboxFile fileName]
[-stopOnBlackBox] [-stopOnMissing] [-libConfigFile configFileName]
[-[no]LibertyPGpins][-QQbarMerge] [-QQbarSetResetMerge] [-floatConnectValue]
[-masterSlaveMerge] [-redundantRegMerge]
 [{-suffixVlogLib | -suffixDftLib | -suffixSynLib} extensionList]
[-hdlin_pragma <directiveLabel> [:<directiveLabel>] ...] [+incdir+include_dir …]
[+define+definition=value …] [-blackboxMemories] [-rtlMemoryLimit [integer]]

log_file_control
[-log logFileName] [-logLevel [mini | compact | full]] [-overWrite]

fplibcomp {-help [blackbox] | -version}

Description

There are four parts to the command syntax as follows:

• library_format specifies the input technology library (for example, files or directory and
type).

• -outputFile or -outputDir specifies the file or directory where compiled libraries are
output.

• -netlist generates a netlist that instantiates all the library cells that can be compared to
another netlist library using formalpro. For more information, see Comparing Libraries.

• globalOptions consists of the optional arguments that allow you to customize the
compilation session. Global options can be specified anywhere on the command line.

Arguments

• -alib library

Specifies the file or directory location of FastScan ATPG technology libraries where library
is either a single library file or a directory containing multiple library files. Only one library
arguments can be specified per switch.

All files with an .lib or .atpglib suffix contained in a specified directory are loaded. All
pathnames are relative to the working directory.
FormalPro Reference Manual, 2018.1256
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
• -alibF fileList

All files with an .lib or .atpglib suffix contained in a specified directory are loaded. All
pathnames are relative to the working directory.

The format of the fileList file is shown in the following example:

commented line
./lib/atpg_library_1.lib # a single ATPG library file
./lib # a directory location containing

ATPG library files
./lib/atpg_library_*.lib # wildcards are allowed

• -blackboxFile fileName

Specifies the location of a black box file containing user-created black box definitions.You
can also use the alias -bbfile. Non-literal pathnames are relative to the current directory. The
syntax for the black box file is:

commented line
blackbox <moduleName>

The FormalPro Library Compiler creates an empty module when you specify a module or
cell as a black box. This functionality is most useful for RAM cells not normally verified
with FormalPro.

• -blackboxMemories

Instructs the FormalPro Library Compiler to black box memory modules larger than 1K.

o -blackboxMemories — enables this functionality (default).

o -noblackboxMemories — disables this functionality

When fplibcomp encounters a module that appears to be a large memory, it black boxes the
module, issues an error notifying you of the action, and continues on with the run.

This functionality prevents fplibcomp from using CPU time and memory on the compilation
of memory modules.

To compile and verify the memory modules, specify the -noblackboxmemories switch.

• -cache cacheDir

Specifies a path and directory name for the FormalPro Library Compiler cache.

A new cache directory is created if none exists. If a cache already exists at the specified
location, it is overwritten. The default location for the FormalPro cache is ./
fplibcomp.cache.

• +definedefinition=value

Specifies a Verilog definition in one of your library files.

o value — a value assigned to the definition (optional).

o definition— the name of the definition.
FormalPro Reference Manual, 2018.1 257
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
You should use this switch if your Verilog RTL files contain ‘ifdef statements and you want
the FormalPro Library Compiler to compile the code within the statement.

• -f commandFile

Loads a command file containing additional command line switches.

o commandFile — the name of the command file.

Loading a command file allows you to specify a text file containing frequently used
command line switches. The syntax for the commandFile is as follows:

commented line
<switch> ... \
<switch> ...

Be sure that no uncommented lines have newline characters; otherwise, the command line
will not run properly. Always use a backslash (\) when specifying switches across multiple
lines.

• -floatConnectValue {0 | 1 | X | Z}

Specifies the driving value of all floating nets in libraries during compilation. Options
include:

o 0 — floating nets are connected to the value 0.

o 1 — floating nets are connected to the value 1.

o X — floating nets are connected to X.

o Z — floating nets remain unconnected (default).

The FormalPro Library Compiler applies this switch to floating nets in your libraries during
pre-compilation.

• -help

Displays help information on the usage of the fplibcomp.

o -help [blackbox] — when you specify this switch with no argument, you receive a
help file for the formalpro command.

blackbox — displays help on creating black box files.

• -hdlin_pragma

Specifies directive labels used in a design.

o <directiveLabel>:[<directiveLabel>]...

"ambit:exemplar:synopsys:pragma" is the default.

• +incdir

Specifies the location of a directory referenced by a Verilog include statement.

o +incdir+include_dir
FormalPro Reference Manual, 2018.1258
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
include_dir — specifies the directory that contains your included files.

You should use this switch if your Verilog RTL files contain ‘include statements and you
want the FormalPro Library Compiler to compile the code within the referenced file.

Your ‘include statements generally reference a file, but for this switch, you need to specify
the directory that contains the file, not the file itself.

When you have multiple ‘include statements that point to different directories, you must
specify +incdir+ for each directory.

• -libConfigFile

Specifies rules for replacing Verilog library cells.

o -libConfigFile configFileName — You can also specify the alias -lcf.

configFileName — specifies the location of the text file containing the replacement
rules.

In some cases, Verilog technology libraries may contain behavioral or timing-check
constructs that you need to remodel for FormalPro to compile them. Once you have
obtained these remodeled libraries, you need to map the original libraries to the new
libraries using a library configuration file.

The format of the library configuration file (configFileName) consists of one entry per line,
where FormalPro ignores blank lines and comment lines prefixed by the number sign (#).
Each entry line has the following syntax:

<cellToReplace> : <replacementCell> (<verilogPortList>);

where cellToReplace and replacementCell are cell names, separated by a colon (:), and
verliogPortList is a comma-separated list of port names enclosed in parentheses. You must
end the entry line with a semicolon (;), as shown in the following example:

commented line
cellA : cellA_new (q, a, b);

You must load both the original library and the remodeled library with the library
specification switches (-alib, -vlib, -ylib, or -slib).

• -[no]LibertyPGpins

Either include or exclude power and ground pins declared on a CELL in a Liberty library.

-LibertyPGpins is the default.

• -log

Renames the FormalPro Library Compiler log files.

o -log logFileName

logFileName — a string used for the new log file name.

This switch renames the file fplibcomp.log to <logFileName>.log.
FormalPro Reference Manual, 2018.1 259
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
• -logLevel

Controls the amount of information written to the FormalPro Library Compiler log file and
stdout.

o -logLevel [mini | compact | full]

mini —writes only the final status.

compact —writes summary information for each stage (default).

full — writes all detailed information for each stage.

FormalPro always generates all three log files for each run. You can find them in the
following FormalPro cache location:

fplibcomp.cache/logs/
fplibcomp_mini.log
fplibcomp_compact.log
fplibcomp_full.log

These filenames may be altered, depending on your setting for the -log switch.

• -masterSlaveMerge

Compiles library files containing two registers in a master/slave configuration so that the
register is represented as a single DFF.

o -masterSlaveMerge — enables this functionality (default).

o -nomasterSlaveMerge — disables this functionality.

Use this functionality so that the number of registers and their appearance are similar to your
post-synthesis design. In some cases, the technology libraries used during synthesis could
increase the register count.

• -mod

When using -netlist, this switch limits the library compilation to the module specified. You
can use this switch only when you specify -netlist.

o -mod moduleName

moduleName — name of the module to compile.

• -netlist

Generates a netlist that instantiates every module of the specified library.

o -netlist netlistName

netlistName — location and name of the netlist to be created.

Use this switch when comparing two versions of a library using FormalPro.

• -outputDir

Specifies a directory location for the precompiled libraries.
FormalPro Reference Manual, 2018.1260
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
o -outputDir dirName — creates a directory containing one file for each precompiled
library module. Each file has the name <moduleName>.v. You can also use the alias
-od.

dirName — location and name of the directory to be created.

The FormalPro Library Compiler generates the precompiled libraries in a simple Verilog
format that FormalPro is able to parse and use in a more efficient way.

• -outputFile

Specifies a file name and location for the precompiled libraries.

o -outputFile fileName — creates a single file containing a precompiled version of
every library file. You can also use the alias -of.

fileName — location and name of the file to be created.

The FormalPro Library Compiler generates the precompiled libraries in a simple Verilog
format that FormalPro is able to parse and use in a more efficient way.

• -overWrite

Overwrites existing generated files and directories.

• -QQbarMerge

Compiles library files containing two registers representing Q and Qbar ports so that the
registers are represented as a single DFF.

o -QQbarMerge — enables this functionality (default).

o -noQQbarMerge — disables this functionality.

Use this functionality so that the number of registers and their appearance are similar to your
post-synthesis design. In some cases, the technology libraries used during synthesis could
increase the register count.

• -QQbarSetResetMerge

Compiles library files containing set- or reset-dominant registers defined with two UDPs so
that the registers are represented as a single DFF.

o -QQbarSetResetMerge — enables this functionality (default).

o -noQQbarSetResetMerge — disables this functionality.

Use this functionality so that the number of registers and their appearance are similar to your
post-synthesis design. In some cases, the technology libraries used during synthesis could
increase the register count.

• -redundantRegMerge

Compiles library files containing two UDPs that produce equal output so that the registers
are represented as a single DFF.

o -redundantRegMerge — enables this functionality (default).
FormalPro Reference Manual, 2018.1 261
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
o -noredundantRegMerge — disables this functionality.

Use this functionality so that the number of registers and their appearance are similar to your
post-synthesis design. In some cases, the technology libraries used during synthesis could
increase the register count.

• -rtlMemoryLimit

Specifies an upper limit for the size of a memory module to be compiled.

o -rtlMemoryLimit [integer]

integer — The default value of integer is 1024.

This switch alters the default size for the -blackBoxMemories switch, which automatically
black boxes large memory modules. Memories that are larger than the integer value you
specify are subject to the -blackboxMemories switch.

• -slib

Specifies technology library files in Synopsys Liberty format.

o -slib library —specifies the file or directory location of Synopsys Liberty
technology libraries.

library — a single library file or a directory containing multiple library files. One
library argument per switch.

o -slibF fileList — specifies the location of a file listing the location of Synopsys
Liberty technology libraries.

fileList — the location of the file. One fileList argument per switch.

When you specify a directory as an argument to -slib, or within the -slibF file list, the
FormalPro Library Compiler recursively expands the directory and loads all files with .lib or
.synlib suffixes. You can specify these switches any number of times on one command line.

The format of the file specified by fileList is shown in the following example:

commented line
./lib/syn_library_1.lib # a single Synopsys library file
./lib # a directory location containing

Synopsys library files
./lib/syn_library_*.lib # wildcards are allowed

• -stopOnBlackBox

Instructs the FormalPro Library Compiler to end a run if it black boxes a module that was
not user-specified.

o -stopOnBlackBox — enables this functionality.

o -nostopOnBlackBox — disables this functionality (default).

• -stopOnMissing

Instructs the FormalPro Library Compiler to end a run if it encounters a missing library cell.
FormalPro Reference Manual, 2018.1262
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
fplibcomp
o -stopOnMissing — enables this functionality. You can also use the alias -somg.

o -nostopOnMissing — disables this functionality (default). You can also use the alias
-nosomg.

• -suffixDftLib

Specifies the suffix styles used for FastScan ATPG files.

extensionList — a colon-separated list of extensions.

Default extensions: .atpglib and .lib.

• -suffixSynLib

Specifies the suffix styles used for Synopsis Liberty library files.

extensionList — a colon-separated list of extensions.

Default extensions: .synlib and .lib.

• -suffixVlogLib

Specifies the suffix styles used for Verilog library files.

extensionList — a colon-separated list of extensions.

Default extensions: .v and .V.

• -version

Displays version information for the FormalPro Library Compiler.

o -version

• -vlib

Specifies technology library files in Verilog format.

o -vlib library —specifies the file or directory location of Verilog technology libraries.

library — a single library file or a directory containing multiple library files. One
library argument per switch.

o -vlibF fileList — specifies the location of a file listing the location of Verilog
technology libraries.

fileList — the location of the file. One fileList argument per switch.

When you specify a directory as an argument to -vlib, or within the -vlibF file list, the
FormalPro Library Compiler recursively expands the directory and loads all files with .v or
.V suffixes. You can specify these switches any number of times on one command line.

The format of the file specified by fileList is shown in the following example:

commented line
./lib/ver_library_1.v # a single Verilog library file
./lib # a directory location containing

Verilog library files
./lib/ver_library_*.v # wildcards are allowed
FormalPro Reference Manual, 2018.1 263
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
Simple Verilog Format
Examples

The following example pre-compiles an ASIC library in the Mentor Graphics ATPG format and
puts the restricted gate-level Verilog in the file resultFile.v.

fplibcomp -alib asic_lib.lib \
-outputFile resultFile.v

This command pre-compiles a Verilog library and puts the results in a directory called
myPreCompiledVersion.

fplibcomp -vlib asic_lib.v -outputDir ./myPreCompiledVersion

Simple Verilog Format
The FormalPro Library Compiler produces the precompiled libraries in a “simple” Verilog
format.

The simple format is as follows:

• Supports net descriptions using wire and supply (scalar and vector).

• Supports modules and ports (in, out, inout - scalars and vector)

• Supports Verilog built-in primitives, except transistors

• Supports integer constants, except all forms of “X” values

• Supports pre-processor instructions and comments

• Does not support instantiations of sub-modules

• Does not support assignments

• Does not support control flow constructs (always, initial, and so on) or expressions

• Does not support timing (including specify blocks) or drive strength

• Does not support UDPs

To provide the additional functionality to FormalPro, two primitives were added to Verilog.
You can use these primitives to look at the description of some cells when debugging the circuit
with the schematic to see which gates are associated with a particular library cell. You could
also use these primitives to modify the precompiled format before using it in FormalPro. The
primitives are:

primitive __mgc_fv_dff
primitive __mgc_fv_dlatch

One represents an edge-sensitive DFF and the other a level-sensitive latch. Their behavior is
represented in the following descriptions using two Verilog User-Defined Primitives (UDP).
You can use these descriptions as inputs to a Verilog simulator, such as ModelSim.
FormalPro Reference Manual, 2018.1264
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
Simple Verilog Format

primitive __mgc_fv_dff (Q, D, CLK, SET, RESET);
 output Q;
 input D, CLK, SET, RESET;
 reg Q;
 // Positive edge triggered D flip-flop with active high
 // asynchronous set and reset.
 // -> nor set nor reset dominates. Explicitly emits an X
 // in case of conflicts.
 initial Q = 1’bx; // make sure we start with an X...

 table

// D CLK SET RESET Qt Qt+1

1 (01) 0 0 : ? : 1;// clocked data
0 (01) 0 0 : ? : 0; // clocked data

? ? * 0 : 1 : 1; // pessimism
? ? 0 * : 0 : 0; // pessimism

? ? 1 0 : ? : 1; // asynchronous set
? ? 0 1 : ? : 0; // asynchronous reset
? ? 1 1 : ? : X; // conflict set/reset -

/
/ make it explicit

? (?0) ? ? : ? : -; // ignore falling clock
0 (?x) ? ? : 0 : -; // retain state when D==Qt
1 (?x) ? ? : 1 : -; // retain state when D==Qt
* 1 ? ? : ? : -; // ignore data edges
* 0 ? ? : ? : -; // ignore data edges

 endtable
endprimitive

primitive __mgc_fv_dlatch (Q, D, EN, SET, RESET);
 output Q;
 input D, EN, SET, RESET;
 reg Q;
 // Positive level sensitive D latch with active high
 // asynchronous set and reset.
 // -> nor set nor reset dominates. Explicitly emits an X
 // in case of conflicts.

initial Q = 1’bx; // make sure we start with an X...

table
// D EN SET RESET Qt Qt+1

1 1 0 0 : ? : 1; // enable data
0 1 0 0 : ? : 0; // enable data

? 0 0 0 : ? : -; // pessimism

? ? 1 0 : ? : 1; // asynchronous set
? ? 0 1 : ? : 0; // asynchronous reset
? ? 1 1 : ? : X; // conflict set/reset -

/

FormalPro Reference Manual, 2018.1 265
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Library Compiler
Simple Verilog Format
/ make it explicit
 endtable
endprimitive
FormalPro Reference Manual, 2018.1266
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix B
Using EDIF Design Files

FormalPro accepts EDIF files as the design root for a gate-level design. FormalPro does not
support the instantiation of an EDIF design within a top-level Verilog or VHDL design. The
cells in “external” libraries in EDIF are considered primitives, and FormalPro searches the
specified Verilog, VHDL or ATPG libraries for their models. If the model is not found in those
libraries, it is black-boxed.

For more information on specifying input files, see “designFile” on page 43.

For more information about how FormalPro compiles EDIF designs, see “Compiled EDIF
Designs” on page 268.

For best results, EDIF files must be optimized for FormalPro. Optimizing files includes
assigning power or ground to nets and ports and specifying the EDIF suffix style used in your
design. For more information, see the following sections:

Specifying Nets and Ports as Power or Ground . 267

Specifying Design File Suffixes . 268

Compiled EDIF Designs . 268

Special Processing Rules . 269

Specifying Nets and Ports as Power or Ground
For designs in EDIF format, you must explicitly specify which ports and nets are tied to power
and ground. FormalPro uses this information to produce a correct circuit description and for
constant propagation.

Use the following switches to assign logical values to ports or nets that are tied to power or
ground. All of these switches are design-specific and apply only to scalar ports and nets.

VDDport

Assigns the value “1” to the specified port(s).

-vddport <portName>[:<portName>]

portName — Specify multiple names as a colon-separated list.

GNDport

Assigns the value “0” to the specified port(s).
FormalPro Reference Manual, 2018.1 267
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using EDIF Design Files
Specifying Design File Suffixes
-gndport <portName>[:<portName>]

portName — Specify multiple names as a colon-separated list.

VDDnet

Assigns the value “1” to the specified net(s).

-vddnet <netName>[:<netName>]

netName — Specify multiple names as a colon-separated list.

GNDnet

Assigns the value “0” to the specified net(s).

-gndnet <netName>[:<netName>]

netName — Specify multiple names as a colon-separated list.

Specifying Design File Suffixes
If your design uses variations on the EDIF file extension that differ from the default extensions,
you must specify the extensions used in the design. Specifying the suffix styles allows
FormalPro to recognize them as EDIF.

By default, FormalPro recognizes the following file extensions: .edf, .edif, .EDF, .EDIF, .EDN,
.edn

Use the following switch to specify the extensions used in your design if your extensions differ
from the default settings.

suffixEDIF

Specifies EDIF extensions used in the design.

-suffixEDIF <extensionList>

where extensionList is a colon-separated list of extensions. When you specify an extension or
group of extensions, they override the default settings. Therefore, you must include all possible
extensions in your argument.

The default extensions are: .edf, .edif, .EDF, .EDIF, .EDN, .edn

Compiled EDIF Designs
FormalPro compiles EDIF design with limitations.
FormalPro Reference Manual, 2018.1268
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using EDIF Design Files
Special Processing Rules
Compiled EDIF designs are compiled as follows:

• Treats all cells and views as if they are from the same library.

• Handles only the first view for each cell.

• Handles identifiers as case-sensitive.

• No limitation to the length of an identifier.

• Converts spaces of renamed identifiers to underscores.

• Does not support:

o viewRef keyword

o keywordAlias construct

o keywordDefine construct

o extended strings

o instance arrays

o subnets

Special Processing Rules
EDIF files have a field that specifies the source program that generated the file.

FormalPro uses this information to do some special processing of data in the EDIF file as
follows:

• Precision-generated EDIF— The INIT property values associated with an instance of a
cell are interpreted as 32-bit hexadecimal numbers to allow for programming of LUT
cells.

• Synplify-generated EDIF — All but one of the "library" sections of this file are
interpreted as being external, which means that they are assumed to have no netlist
structure in EDIF and that their logic models are contained in an external Verilog,
VHDL, or ATPG library. Only the "work" library is interpreted as having netlist
structure in all its cell definitions.
FormalPro Reference Manual, 2018.1 269
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using EDIF Design Files
Special Processing Rules
FormalPro Reference Manual, 2018.1270
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix C
FormalPro Utilities

FormalPro provides a collection of special-purpose utilities from the fp_utility command. These
utilities perform a variety of useful functions such as encrypting/translating design files,
resolving match issues, and exploring the results of equivalence checking.

fp_utility . 271

fp_utility
The utilities are run via the fp_utility command in the following manner.

$ fp_utility <utility_name> <utility_args>

Utility key words: pipeline, retime, transparent, duplicate, unmatched, cross reference, analyze,
FPGA routing, script, target report, solve loop, match loop, VSDC.

Most of the utilities provide a -help argument that displays additional usage information. For
more information, email fv_support@mentor.com.

You can copy these utilities from the following location and customize them for your
application:

$FORMALPRO_HOME/pkgs/fv/utils

Enter the fp_utility command from the Linux command line or via Tool > Utility Shell in the
FormalPro GUI to display a list of the utilities similar to:

$ fp_utility
FormalPro Utilities 2.14
Usage:
 VSDC -help : translates VSDC[Synopsys guide files] and Oasys RT
 formats
 CTC -help : translates Cadence RC and Conformal command/guide file
 and pragma conversion
 Xref -help : make matches from unmatched-Xref file conversion
 Goodmatches -help : make match + ignore files from equvalent results.
 Usage:Goodmatches cache_name
 Unmatched -help : make unmatched-2-constraint extraction from
 unmatched_objects.report file
 Make_duplicateB : make_duplicateB [cache] [-help]. Makes a
 duplicateB.constraint file from cache if typical
 SNPS _rep[i] is used. Edit script to customize

...
FormalPro Reference Manual, 2018.1 271
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FormalPro Utilities
fp_utility
FormalPro Reference Manual, 2018.1272
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix D
Supported VHDL2008 Constructs

This section describes key VHDL 2008 language features supported by FormalPro.

Conditional and Selected Sequential Assignments . 274

Simplified Case Expression Support . 274

Unconstrained Element Support . 275

Context Declarations . 275

Extensions to Generate . 276

Standard Packages. 277

Fixed Point Package. 279

Float Point Package . 279

Expressions Port Map . 280

Read Out Ports. 281

Simplified Sensitivity List . 281

Block Comments . 282

Matching Case Statement . 282

Array-Scalar Operators . 283

Logical Reduction Operators . 283

Matching Relational Operators . 283

Conditional Operator Support . 284

Maximum and Minimum Function Support. 284

Unconstrained Record Elements . 284

Type Generics. 285

Generic List . 286

Bit String Literal . 287

Resolved Element Support . 289
FormalPro Reference Manual, 2018.1 273
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Conditional and Selected Sequential Assignments
Conditional and Selected Sequential
Assignments

VHDL 2008 allows conditional and selected signal assignment statements in concurrent
(signals only) and sequential (signals and variables) modes.

Prior to VHDL-2008, this was limited to conditional and selected signal assignments in
concurrent context only. A conditional statement (when?) carries the same semantics as an if-
else-if statement. A select statement (select?) carries the same semantics as a case (case?)
statement. By extending support for these conditional and select statements for variables and
signals and also in sequential mode, the semantics of the language are made consistent. Thus,
the choice list in a selected expression can even contain don’t-cares (-) when the select? usage is
done. The following example describes this clearly.

Example

Simplified Case Expression Support
After associating values ‘1’ and ‘0’ to the first and second elements in an array for a case
expression, other elements can be assigned to value ‘1’ provided the case expression is locally
static. Prior to VHDL 2008, assigning values to elements after the first and second assignments
was not possible. Thus, the following examples are now valid with VHDL 2008.

VHDL 2002 VHDL 2008

Process (d, reset)
Begin
 If reset = '1' then
 Q <= '0'
 Else
 Q <= d;
 End if;
End Process;

Process (reset, d)
Begin
 Q <= '0' when reset else d;
End process;

Process (val1, val2, val3, val4,
sel)
Begin
 Case sel is
 When "00" => q <= val1;
 When "01" => q <= val2;
 When "10" => q <= val3;
 When "11" => q <= val4;
 End case;
End process;

Process (val1, val2, val3, val4,
sel)
Begin
with sel select q <= val1 when
"00",
val2 when "01",
val3 when "10",
val4 when "11";
end process;
FormalPro Reference Manual, 2018.1274
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Unconstrained Element Support
Example

Unconstrained Element Support
VHDL 2008 allows array elements to be unconstrained. It is not necessary to define an array’s
size and this can instead be determined during signal/variable/constant declaration during
elaboration. The keyword open can be used to skip constraints during declaration.

Example

Type M_unconstrained is array (natural range<>, natural range <>) of bit;
Type A_unconstrained is array (character range<>) of M_unconstrained;
Type A1_partially_constrained is array (character range 'a' to 'z') of
M_unconstrained;
Subtype s4 is A_unconstrained(open)(0 to 7, 31 downto 16);

Note
Support for unconstrained elements currently exists only for arrays and not for records.

Context Declarations
In VHDL 2008, you can create context declarations of your libraries and ‘use’ clauses.

VHDL 2002 VHDL 2008

Variable s: bit_vector (3 downto
0);
Variable c: bit;
Subtype bv5 is bit_vector(4
downto 0);
….
Case (bv5'(s &c))
When "00000" => …
When "00001" => ….
When others => ….
End case

Variable s: bit_vector (3 downto
0);
Variable c: bit;
 ….
Case (s &c)
When "00000" => …
When "00001" => ….
When others => ….
End case

Variable s: bit_vector(3 downto
0);
….
Case (s)
When "0001" => …
When "0010" => ….
When others => ….
End case

Variable s: bit_vector(3 downto
0);
….
Case (s)
When (0 => '1' others => '0') => …
When (1 => '1' others => '0') =>
….
When others => ….
End case
FormalPro Reference Manual, 2018.1 275
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Extensions to Generate
Example

context widget_context is
library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;
use widget_lib.widget_defs.all;
use widget_lib.widget_comps.all;
end context widget_context;
...........
library widget_lib;
context widget_lib.widget_context;

Extensions to Generate
VHDL 2008 introduces support for if-else-if and case generate statements. Previously, the
generate feature was restricted to the if statement only.

Example

VHDL 2002 VHDL 2008

for I in width -1 downto 0
generate
begin
 if I = width - 1 generate
 adder_1: adder(in1, in2,
out1);
 end generate

 if not I = width - 1 generate
 adder_2: adder(in3[i],in2[i],
out2);
 end generate
end generate

for I in width -1 downto 0
generate
begin
 if I = width - 1 generate
 adder_1: adder(in1, in2,
out1);
 else generate
 adder_2: adder(in3[i],in2[i],
out2);
 end generate
end generate

FormalPro Reference Manual, 2018.1276
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Standard Packages
Standard Packages
VHDL 2008 LRM provides updates to the existing language predefined packages namely the
Standard, Std_logic_1164, Numeric_bit and Numeric_std Packages. VHDL 2008 also added
two new packages namely the Numeric Unsigned Packages (numeric_std_unsigned and
numeric_bit_unsigned) which defines the unsigned type and associated operations for a
situation when it is required to model a std_ulogic_vector/bit_vector represented as a binary
coded number.

Refer to VHDL 2008 LRM section 16.8 for details regarding the enhancements done to
Standard package

Updates in Standard Package. 277

Updates in Std_logic_1164 Package . 278

Updates in Numeric packages. 278

Updates in Standard Package
VHDL 2008 supports updates to the standard package.

• New data types

o boolean_vector

o integer_vector

o real_vector

o time_vector

• New Predefined operators on the new and existing data types

o Relational ("=", "/=", "<", ">", "<=", ">=")

o Concatenation (“&”)

o Matching relational ("?=", "?/=", "?>", "?>=", "?<", "?<=")

o Conditional operators (“??”)

• New functions on the new data types

o rising_edge()

o falling_edge()

o maximum()

o minimum()
FormalPro Reference Manual, 2018.1 277
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Updates in Std_logic_1164 Package
Tip
Limitation: The following operators are not supported: mod, rem on time type,
To_string, To_bstring, to_ostring, and to_hstring.

Updates in Std_logic_1164 Package
Predefined operators

• array scalar operators (and, nand, or, nor, xor, xnor)

• Logical reduction operators (and, nand, or, nor, xor, xnor)

• Shift and Rotate operators (sll, srl, rol, ror)

• Conversion functions: TO_01().

• Conditional operator ("??")

• Alias (TO_BV, TO_SLV, TO_SULV, TO_BIT_VECTOR,
TO_STD_LOGIC_VECTOR, TO_STD_ULOGIC_VECTOR)

Tip
Limitation: String conversions and TextIO functions are not supported.

Updates in Numeric packages
VHDL 2008 adds support for numeric packages.

New package Numeric_bit_unsigned

• Provides convenient interpretation mechanism for bit_vector represented as binary
coded number

• Provided conversion functions and arithemetic operator/functions

New package Numeric_std_unsigned

• Provides convenient interpretation mechanism for std_ulogic_vector represented as
binary coded number

• Provided conversion functions and arithemetic operator/functions

New operators in Numeric_bit and Numeric_std package like

• array scalar operators (and, nand, or, nor , xor, xnor)

• logical reduction operators (and, nand, or, nor , xor, xnor)

• overloaded shift operators (sla, sra)
FormalPro Reference Manual, 2018.1278
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Fixed Point Package
• New functions

o find_leftmost()

o find_rightmost()

o maximum()

o minimum()

• Overloading of matching relational operators ("?=", "?/=", "?>", "?>=", "?<", and "?<=")

• Conversion Function (is_X)

Tip
Limitation: TextIO and String conversion functions are not supported.

Fixed Point Package
VHDL 2008 adds support for Fixed Point Package which provides a representation of floating
numbers in the form of fixed point representation.

The types supported in fixed point package are ufixed (unsigned fixed point) and sfixed (signed
fixed point) types. These types are always supposed to have “downto” ranges with positive
ranges for integral part and negative ranges for fractional part. This is very useful for DSP
applications. Annex G of the LRM 1076-2008 contains more information about the usage of
this package.

Example

6.5 is represented as

signal y: ufixed(4 downto -5);
…....
Y <= “0011010000”; -- 6.5

Also, since package generics are not supported currently, support for fixed_generic_pkg does
not exist currently.

Float Point Package
VHDL 2008 adds support for Floating Point Math Package which allows to represent non
integral values with constant absolute precision over a given range.

For certain application domains, it is better to use floating point representation for a given
number of bit representation. Floating point values are as per IEEE Std 743 and IEEE Std 854
with a sign bit, exponential field and a fraction field. For more details please refer to section
16.11 of VHDL IEEE 1076-2008 Language Reference Manual
FormalPro Reference Manual, 2018.1 279
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Expressions Port Map
• New data types (float, float32, float64, float128, valid_fpstate

• Predefined operators on the new types

o Arithmetic operators & functions

o Comparison operators & functions

o Relational operators

o Logical operators

o Logical reduction operators

o Matching relational operators

o Matching functions

o Maximum and Minimum functions

o Find_leftmost and Find_rightmost functions

o Conversion functions

o Break_number, normalize functions

o Functions to return constants

Tip
Limitation: String and TextIO functions are not supported.

Example

--Signal declaration of a predefined type (float32)
Signal myfloat : float32;
-- Subtype declaration using unconstrained type (float)
Subtype my_float1128 is float(15 down to -112);
-- Operator usage on predefined type (float32)
variable a: float32;
variable b: float32;
signal c, d : float32;
c <= A+B;
d <= 6.5;

Expressions Port Map
VHDL 2008 allows input ports to be connected to expressions instead of the need to create
temporary signals.

Example

Inst1 : trial_ent port map (cin1 => CONV_INTEGER(STD_LOGIC_VECTOR(tdin1)
or x"1010") , cin2 => tdin2, cout1 => tdout1);
FormalPro Reference Manual, 2018.1280
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Read Out Ports
Read Out Ports
VHDL 2008 allows output ports to be read. Though this feature is mainly intended to help the
verification of assertions and monitors, language semantics do not stop it from being used in
algorithmic behavior.

The scope of this feature will support reading output ports in architectures, sub-programs etc. In
case of variables in sub-programs, the value propagation won't be done as per LRM but in case
of signals the connection will be as passed by reference.

Simplified Sensitivity List
VHDL 2008 introduces the keyword 'all' which can be used in process sensitivity list. This will
ensure that all signals are appropriately added in the sensitivity list.

Example

Table D-1. Read Out Ports

VHDL 2002 VHDL 2008

Entity dff is
 Port (clk, d: in bit; q, q_n:
out bit);
End entity;

Architecture rtl of dff is
Signal q_int: bit;
Begin
 Process (clk)
 Begin
 If (clk = '1') then
 q_int <= d;
 end if;
 end process;
 q <= q_int;
 q_n <= q_int;
end rtl;

Entity dff is
 Port (clk, d: in bit; q, q_n:
out bit);
End entity;

Architecture rtl of dff is
Begin
 Process (clk)
 Begin
 If (clk = '1') then
 q <= d;
 end if;
 end process;
 q_n <= q;
end rtl;

Table D-2. Simplified Sensitivity List

VHDL 2002 VHDL 2008

Process(in1, in2, in3, in4)
Begin
 Out1 <= in1;
 Out2 <= in2;
 Out3 <= in3;
 Out4 <= in4;
End process

Process (all)
Begin
 Out1 <= in1;
 Out2 <= in2;
 Out3 <= in3;
 Out4 <= in4;
End process

FormalPro Reference Manual, 2018.1 281
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Block Comments
Block Comments
VHDL 2008 introduces C-style multi-line comments starting with '/*' and ending with '*/'. The
nesting of block comments is, however, not allowed in VHDL 2008.

Example

Matching Case Statement
In VHDL 2008, case statements are introduced with Don't Care in the choice statement by usage
of 'case?'. A simple example is described here where the value of the case expression Xin is
matched with expressions containing ‘don't care’. The restriction on Xin is that its value cannot
contain a '-' which is an error.

It is also an error if any two choice lists contain the same value. Therefore, the values "---1" and
"--1-" in choice lists should yield an error due to an overlap of choices. The case expression is
bit/std_ulogic or its vector.

Table D-3. Block Comments

VHDL 2002 VHDL 2008

Entity dff is
 Port (clk, d: in bit; q, q_n:
out bit);
End entity;

Architecture rtl of dff is
Signal q_int: bit;
Begin
 Process (clk)
-- This line
-- and this line
-- must be commented
 Begin
 If (clk = '1') then
 q_int <= d;
 end if;
 end process;
 q <= q_int;
 q_n <= q_int;
end rtl;

Entity dff is
 Port (clk, d: in bit; q, q_n:
out bit);
End entity;

Architecture rtl of dff is
Signal q_int: bit;
Begin
 Process (clk)
/* This line
 and this line
 must be commented*/
 Begin
 If (clk = '1') then
 q_int <= d;
 end if;
 end process;
 q <= q_int;
 q_n <= q_int;
end rtl;

FormalPro Reference Manual, 2018.1282
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Array-Scalar Operators
Example

case? Xin is
 when "--1" =>
 Zout <= Ain;
 when "-10" =>
 Zout <= Bin;
when others =>
 Zout <= Cin;

Array-Scalar Operators
Array Scalar Operators allow a scalar operand to be applied to all the elements of an array. The
array-scalar logical operators are AND, OR, NAND, NOR, XOR and XNOR for bit, Boolean
and std_ulogic types.

In the example shown here, the AND operator is applied to each bit of A with ASel and result is
stored in T.

 A : IN BIT_VECTOR (3 downto 0);
 ASel : In BIT;
 T <= A and ASel;

Logical Reduction Operators
Logical Reduction Operators allow an array to be reduced to array element type by the
application of the operator. The logical reduction operators AND, OR, NAND, NOR, XOR and
XNOR are pre-defined for bit and Boolean vectors. They must be defined in std_logic_1164
package for std_ulogic_vector and std_logic_vector.

The following is an example of parity bit calculation in both VHDL 2008 and VHDL 2002.

Matching Relational Operators
VHDL 2008 introduces relational operators that return the result of the bit type or std_ulogic
type instead of Boolean result. The matching relational operators are "?=", "?/=", "?<", "?<=",
"?>" and "?>=". The following example demonstrates the use of matching relational operators
which don’t require the use of a when-else statement as was the case prior to VHDL-2008.

Table D-4. Logical Reduction Operators

VHDL 2002 VHDL 2008

Parity <= data(0) xor data(1) xor
data(2) xor data(3);

Parity <= xor data;
FormalPro Reference Manual, 2018.1 283
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Conditional Operator Support
Conditional Operator Support
VHDL 2008 adds a conditional operator "??" which converts bit/std_ulogic type to boolean
type. This simplifies the task of writing conditional expressions. The operator is implicitly
inferenced in expressions by applying the operator tothe entire expression. The "??" operator
can be used in ‘until’, ‘if’, ‘elseif’, ‘while’ and ‘when’ statements.

The following example shows implicit inference of the conditional operator.

Maximum and Minimum Function Support
VHDL 2008 introduces pre-defined maximum and minimum functions with semantics
"[ScalarType, ScalarType] return ScalarType" and "[DiscreteArrayType, DiscreteArrayType]
return DiscreteArrayType".

Maximum and minimum functions make use of the "<" operator for ordering. VHDL 2008 also
predefines maximum and minimum functions as reduction operators on array values with
semantic "[ArrayType] return ArrayElementType".

Unconstrained Record Elements
VHDL 2008 allows you to keep record elements unconstrained during type definition. These
can be constrained later during elaboration or signal declaration.

Table D-5. Matching Relational Operators

VHDL 2002 VHDL 2008

Control_sig <= '1' when x = y else
'0'

Control_Sig <= x ?= y;

Table D-6. Conditional Operator Support

VHDL 2002 VHDL 2008

if a ='1' and b = '1' then
 Q <= d;
end if;

if a and b then
 Q <= d;
end if;

FormalPro Reference Manual, 2018.1284
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Type Generics
Example

type myrec is record
a : std_logic_vector;
b : bit;
c : bit_vector;
end record;

signal s : myrec((3 downto 0), open, (2 downto 0));

In this example, the constraints of ‘a’ and ‘c’ elements are defined only during signal
declaration and not during type definition.

Type Generics
VHDL 2008 enables packages/entity/subprograms and so on which can have generics with
values and types. Package generics allows you to instantiate the package with an override value
or type to allow the reuse of a package in different contexts. With the support of this feature
Precision now handles both values and types specification for package generics.

Example

Package Declaration

library IEEE;
use IEEE.std_logic_1164.all;

package my_pack is
 type mytype is array (7 downto 0) of std_logic;
end package;

library IEEE;
use IEEE.std_logic_1164.all;
package pack is
 generic(width : integer := 3;
 in0 : std_logic_vector (3 downto 0) := "1011";
 vector : integer := 7;
 type T);
 procedure proc(a : in T; b : out T);
end package;

package body pack is
 procedure proc(a : in T; b : out T) is
 begin
 b := a;
 end proc;

end package body;

Package Instantiation
FormalPro Reference Manual, 2018.1 285
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Generic List
library IEEE;
use IEEE.std_logic_1164.all;
package pack_inst is new work.pack generic map

(7,"1011",3,work.my_pack.mytype);

Tip
Limitation: Package generics are supported within the scope of global declarations.
Package declaration and instantiation within another package is not supported. Usage of

generic types in contexts of entity and subprogram is not supported.

Generic List
VHDL 2008 enables extension to generic list (declared inside allowed declaration scope namely
the subprogram, component, design entity, block declaration or package) so to allow a name
declared as part of generic be used in other declarations.
FormalPro Reference Manual, 2018.1286
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Bit String Literal
Example

library ieee;
use ieee.std_logic_1164.all;

package I2C_IOE_PCK is
type t_Device_Data_Array is array (natural range <>) of
std_logic_vector(15 downto 0);

component I2C_IOE is
generic
(
 c_NrOffDevices : natural := 3;
 c_Port_RW_Config : t_Device_Data_Array(c_NrOffDevices -1 downto 0)
);
Port
(
 DataIn : in t_Device_Data_Array (c_NrOffDevices -1 downto 0);
 DataOut : out t_Device_Data_Array (c_NrOffDevices -1 downto 0)
);
end component;
end package I2C_IOE_PCK;

use work.I2C_IOE_PCK.all;

entity I2C_IOE is
generic
(
 c_NrOffDevices : natural := 3;
 c_Port_RW_Config : t_Device_Data_Array(c_NrOffDevices -1 downto 0)

);
Port
(
 DataIn : in t_Device_Data_Array (c_NrOffDevices -1 downto 0);
 DataOut : out t_Device_Data_Array (c_NrOffDevices -1 downto 0)
);
end I2C_IOE;

architecture Behavioral of I2C_IOE is
begin
 DataOut <= DataIn;
end Behavioral;

In this example, the generic c_NrOffDevices is being used in the context of declaring other
generics, port declaration, and so on.

Bit String Literal
VHDL 2008 enhances bit-string literal support by allowing the following:

1. Size Specification which is an integer value defined as length of the bit string and it is
optional.
FormalPro Reference Manual, 2018.1 287
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Bit String Literal
2. Usage of any graphic character as part of the bit value.

3. Base specification which can be of following forms and have their predefined expansion
and truncation rules:

B - Binary

O - Octal

X - Hexadecimal

UB - Unsigned Binary

UO - Unsigned Octal

UX - Unsigned Hexadecimal

SB - Signed Binary

SO - Signed Octal

SX - Signed Hexadecimal

D - Decimal

Example

package CONV_PACK_constant7 is
 type row is array (0 to 3) of bit;
 type matrix is array (0 to 3) of row;
end CONV_PACK_constant7;

use work.CONV_PACK_constant7.all;
entity constant7 is
port(in0, in1 , in2 , in3 : row;
 control : integer range 0 to 3;
 out_mux : out row);
end;

architecture constant7 of constant7 is
 signal in_matrix1 : matrix;
 constant in_matrix : matrix :=
(4SX"f9",4SB"00000011",4UB"0000001010",4UO"06");
begin
 process(in0, in1, in2, in3, control,in_matrix1)
 begin
 in_matrix1 <= (0 => in0 , 1 => in1 , 2 => in2 , 3 => in3);
 out_mux <= in_matrix(control) xor in_matrix1(control);
 end process;
end;
FormalPro Reference Manual, 2018.1288
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
Example

library IEEE;
use IEEE.std_logic_1164.all;
package CONV_PACK_component is
attribute ENUM_ENCODING : STRING;
type myenum is (S1, S3, C4, C7, C3, A1, D9, K9, R2);
attribute ENUM_ENCODING of myenum : type is
 "0000 0001 0010 0011 0100 0101 0110 0111 1000";
 function std_logic_vector_to_myenum(arg : in std_logic_vector(1 to 4
))
 return myenum;
end CONV_PACK_component;

package body CONV_PACK_component is

 function std_logic_vector_to_myenum(arg : in std_logic_vector(1 to 4
))
 return myenum is
 begin
 case arg is
 when 4D"0" => return S1;
 when 4D"1" => return S3;
 when 4D"2" => return C4;
 when 4D"3" => return C7;
 when 4D"4" => return C3;
 when 4D"5" => return A1;
 when 4D"6" => return D9;
 when 4D"7" => return K9;
 when 4D"8" => return R2;
 when others => return S1;
 end case;
 end;
end CONV_PACK_component;

Resolved Element Support
In VHDL 2002, resolved signals and subtypes are used to specify multiply driven sources.

VHDL 2008 allows you to specify the resolution function for composite types (records or
arrays). In VHDL 2008, the predefined type std_logic_vector is now made a subtype of
std_ulogic_vector is defined as:

subtype std_logic_vector is (resolved) std_ulogic_vector

This definition implies the following:

• It is possible to assign a std_ulogic_vector to std_logic_vector and vice versa.

• It is possible to specify the resolution function for each element of the std_logic_vector,
and the multiple drivers to signals of std_logic_vector element types would get resolved
with resolution function "resolved".
FormalPro Reference Manual, 2018.1 289
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
Resolution function notes to be considered include:

• Resolution functions are relevant when multiple sources drive a signal that has a
resolution marking.

• Resolution function indications can be given at a signal or subtype declaration. In case
of a resolution function indication on a signal as well as subtype, the one at the signal
will have higher priority than the subtype. The resolution indication closest to the top in
the type hierarchy of the signal overrides all other resolution indications.

• Resolution functions are implicitly called.

• Resolution functions can be of the following types:

o pragma based (wired or, wired and, three state)

o user defined

Precision support of resolution functions consists of the following:

• All predefined array types (std_logic_vector, ufixed, sfixed, UNSIGNED, SIGNED,
float) where resolution function indication can be specified for its elements. These
predefined types are part of the IEEE 2008 packages.

• Resolution function indication on user defined subtypes, signals of predefined types

subtype arr_slv is (my_res_func1) array (natural range <>) of
std_logic_vector;
signal s: arr_slv1; --elements will get resolved with my_res_func1
function
signal t : (my_res_func2) std_logic_vector; --elements will get
resolved with my_res_func2 function

• Resolution function indication specification at multiple levels for user defined types,
subtypes and signals. The number of parenthesis around the resolution function defines
the nesting level to which resolution function is to be applied.

type arr_slv is array (natural range <>) of std_logic_vector;
subtype res_arr_slv is ((my_res_func3)) arr_slv; --element of type
std_logic will get resolved with my_res_func3 function
signal u : ((my_res_func4)) arr_slv (3 downto 0); --element of type
std_logic will get resolved with my_res_func4 function

• Resolution function indication specification for record types, subtypes and signals at
multiple levels.
FormalPro Reference Manual, 2018.1290
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
TYPE E IS ('0', '1', '2', '3', '4', '5', '6', '7');
type E_ARR is array (natural range <>) of E;
subtype E_ARR_RES is (f1) E_ARR; --element of type 'E' will get
resolved with function f1

type E_ARR_ARR is array (natural range <>) of E_ARR;
subtype E_ARR_ARR_RES is ((f2)) E_ARR_ARR; --element of type 'E'
will get resolved with function f2

type S is record
 w : E_ARR_ARR(1 downto 1)(2 downto 2);
 x : std_ulogic;
end record;

subtype S_RES is (w ((f3)), x f4) S; --element of type 'E' in
record field w will get resolved with function f3 and element of
type 'std_ulogic' in record field x will get resolved with function
f4.
FormalPro Reference Manual, 2018.1 291
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
Example

library ieee;
use ieee.std_logic_1164.all;

package mypack is

 type mytype is ('0','1');
 type new_myType1D is array (integer range <>) of mytype;

 function res_1D(s:new_myType1D)return mytype;
 function res1_1D(s:new_myType1D)return mytype;

 type my2D is array (NATURAL range <>) of new_myType1D;
 type myMD is array (NATURAL range <>,NATURAL range <>) of mytype;
 subtype my1darr is (res_1D) new_myType1D;
 subtype my2darr is ((res_1D)) my2D;
 subtype myMultarr is (res_1D) myMD;

 function my_and(s,r:mytype)return mytype;
 function my_or(s,r:mytype)return mytype;
 function res(s:new_myType1D)return mytype;
 function res1(s:new_myType1D)return mytype;

 subtype mytype1 is (res) new_myType1D;
 subtype mytypeR is res mytype;
 subtype myType1D is (res) new_myType1D;

 subtype sub is bit_vector(3 downto 0);
 type arr is array (natural range <>) of sub;
 function res_func(in1: arr) return sub;
 subtype subr is res_func sub;

 function conv_slv21D(slv: std_logic_vector) return new_myType1D;
 function conv_1D2slv(type1D:new_myType1D) return std_logic_vector;
 function conv_2Dtoslv(type2D:my2darr) return std_logic_vector;
 function conv_slvto2D(slv:std_logic_vector) return my2darr;
 function conv_slvtoM2D(slv:std_logic_vector) return myMultarr;
 function conv_M2Dtoslv(type2D:myMultarr) return std_logic_vector;
end;

package body mypack is

 function conv_slv21D(slv: std_logic_vector) return new_myType1D is
 variable result:new_myType1D(5 downto 0);
 begin
 for i in slv'range loop
 if(slv(i) = '0') then
 result(i) := '0';
 end if;
 if (slv(i) = '1') then
 result(i) := '1';
 end if;
 end loop;
 return result;
 end conv_slv21D;

FormalPro Reference Manual, 2018.1292
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support

 function conv_1D2slv(type1D:new_myType1D) return std_logic_vector is
 variable result:std_logic_vector(5 downto 0);
 begin
 for i in type1D'range loop
 if(type1D(i) = '0') then
 result(i) := '0';
 end if;
 if (type1D(i) = '1') then
 result(i) := '1';
 end if;
 end loop;
 return result;
 end conv_1D2slv;

 function conv_2Dtoslv(type2D:my2darr) return std_logic_vector is
 variable result:std_logic_vector(24 downto 0);
 begin
 for i in type2D'range loop
 for j in type2D(i)'range loop
 if(type2D(i)(j) = '0') then
 result(i*5+j) := '0';
 end if;
 if (type2D(i)(j) = '1') then
 result(i*5 +j) := '1';
 end if;
 end loop;
 end loop;
 return result;
 end conv_2Dtoslv;

 function conv_slvto2D(slv:std_logic_vector) return my2darr is
 variable result:my2darr(4 downto 0)(4 downto 0);
 variable temp:integer := 0;
 begin
 for i in slv'range loop
 if(slv(i) = '1') then
 result(i/5)(i mod 5) := '1';
 end if;
 if(slv(i) = '0') then
 result(i/5)(i mod 5) := '0';
 end if;

 end loop;
 return result;
 end conv_slvto2D;

 function conv_M2Dtoslv(type2D:myMultarr) return std_logic_vector is
 variable result:std_logic_vector(24 downto 0);
 begin
 for i in 0 to 4 loop
 for j in 0 to 4 loop
 if(type2D(i ,j) = '0') then
 result(i*5+j) := '0';
 end if;
 if (type2D(i ,j) = '1') then
 result(i*5 +j) := '1';
 end if;
FormalPro Reference Manual, 2018.1 293
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
 end loop;
 end loop;
 return result;
 end conv_M2Dtoslv;

 function conv_slvtoM2D(slv:std_logic_vector) return myMultarr is
 variable result:myMultarr(4 downto 0,4 downto 0);
 variable temp:integer := 0;
 begin
 for i in slv'range loop
 if(slv(i) = '1') then
 result(i/5 , i mod 5) := '1';
 end if;
 if(slv(i) = '0') then
 result(i/5 , i mod 5) := '0';
 end if;
 end loop;
 return result;
 end conv_slvtoM2D;

 function my_and(s,r:mytype)return mytype is
 variable result : mytype := '0';
 begin
 if (s = '1' and r = '1') then
 result := '1';
 end if;
 return result;
 end my_and;

 function my_or(s,r:mytype)return mytype is
 variable result : mytype := '1';
 begin
 if (s = '0' and r = '0') then
 result := '0';
 end if;
 return result;
 end my_or;

 function res(s:new_myType1D)return myType is
 variable result:myType:='1';
 begin
 for i in s'range loop
 result:= my_and(result,s(i));
 end loop;
 return result;
 end res;

 function res1(s:new_myType1D)return mytype is
 variable result:mytype:='0';
 begin
 for i in s'range loop
 result:= my_or(result,s(i));
 end loop;
 return result;

FormalPro Reference Manual, 2018.1294
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
 end res1;

 function res_1D(s:new_myType1D)return mytype is
 variable result:mytype:='0';
 begin
 for i in s'range loop
 result:= my_or(result,s(i));
 end loop;
 return result;
 end;

 function res1_1D(s:new_myType1D)return mytype is
 variable result:mytype:='0';
 begin
 for i in s'range loop
 result:= my_or(result,s(i));
 end loop;
 return result;
 end;
 function res_func(in1: arr) return sub is
 variable var : sub := in1(in1'low);
 begin
 for i in in1'low + 1 to in1'high loop
 var(3) := var(3) or in1(i)(3);
 var(2) := var(2) or in1(i)(2);
 var(1) := var(1) or in1(i)(1);
 var(0) := var(0) or in1(i)(0);
 end loop;
 return var;
 end;

end;

use work.mypack.all;
library ieee;
use ieee.std_logic_1164.all;
entity test is
 generic(
 P : NATURAL range 0 to 1 := 1
);
 port (in1, in2 : in std_logic_vector(24 downto 0);
 out1: out std_logic_vector(24 downto 0)
);
end;

architecture arch of test is
 signal a: (res)new_myType1D(5 downto 0);
 signal b: (res)new_myType1D(5 downto 0);
 signal o: (res)new_myType1D(5 downto 0);

 signal a2: (res_1D)myMultarr(4 downto 0,4 downto 0);
 signal b2: (res_1D)myMultarr(4 downto 0,4 downto 0);
 signal c2: (res_1D)myMultarr(4 downto 0,4 downto 0);

begin
 a2 <= conv_slvtoM2D(in1);
 b2 <= conv_slvtoM2D(in2);

FormalPro Reference Manual, 2018.1 295
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported VHDL2008 Constructs
Resolved Element Support
 c2 <= a2;
 G: if(P = 5) generate
 c2 <= b2;
 end generate G;

 out1 <= conv_M2Dtoslv(c2);

end;
FormalPro Reference Manual, 2018.1296
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix E
readVSDC Flow File

A readVSDC flow file enables in-line reading of guide files from both the Oasys-RTL and
Design Compiler tools. Combined with the new Heuristic Name Lookup function that performs
name translation at runtime, test performance with Oasys-RTL and Design Compiler guide files
is greatly improved.

Using the readVSDC Flow . 297

Using the readVSDC Flow
The readVSDC flow enables in-line reading of guide files from both the Oasys-RTL and Design
Compiler tools.

The “-flow readVSDC” option extracts duplicate and constant assertion constraints from the
Synopsys VSDC file (or Mentor Oasys). Duplicate information is quite critical for LEC, and
constant assertions are also discovered automatically. However, in many deep cases, the
automatic process requires additional help, and the VSDC file should be providing a complete
record. Both duplicate and constant settings are verified in FormalPro with a proof, and an error
will be reported if they are not valid.

Procedure

1. Set the $FORMALPRO_VSDCFILE environment variable to the guide file name before
invoking FormalPro. For example:

setenv FORMALPRO_VSDCFILE path/myfile.vsdc
export FORMALPRO_VSDCFILE=path/rt_opt_reg.txt

2. Invoke FormalPro with multiple flow files as needed. For example:

formalpro -flow dc_ultra -flow readVSDC -a rtl.fl -b netlist.fl
formalpro -flow oasys -flow readVSDC -a rtl.fl -b netlist.fl

Depending on the flow, a local constraint file is generated that you can edit for direct
input to FormalPro:

o Design Compiler flow — vsdc.constraint is created

o Mentor Graphics Oasys-RTL flow — _rtAuTo.constraint is created

The time stamp prevents overwriting edited files.
FormalPro Reference Manual, 2018.1 297
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

readVSDC Flow File
Using the readVSDC Flow
Caution
The local constraint translations files are overwritten if the
$FORMALPRO_VSDCFILE environment variable points to a file that is newer than

the local file, so manage these files with care.

Examples

This is how the command line with the “-flow readVSDC” executes the following command
internally:

formalpro -flow dc_ultra -flow readVSDC ...

The internal “readVSDC” executes this command:

$MGC_HOME/bin/fp_utility vsdc2constraint -quiet -stdout -fast

(where $FORMALPRO_VSDCFILE points to the input file and path.)

The preceding command uses the “-fast” mode, which is just a default translation of strings. It
does not perform a lookup of actual names. In this mode, the resulting translation is written to a
file in the local directory. The local file can then be edited. One solution is to modify that file
and use it directly as a parameter to the -constraintFile option. Copy and rename this file
(vsdc.constraint) before running the following manual command to compare them.

If you run the following manual command with a formalpro.cache that has already been run
through the match phase, then a lookup function will happen, which attempts to convert the
Synopsys name to the actual “best fit” FormalPro name. It does not set the -fast option.

$MGC_HOME/bin/fp_utility vsdc2constraint $FORMALPRO_VSDCFILE \
-cache formalpro.cache

This makes an output file vsdc.constraint that can be examined. A best practice is to simply
extract the lines that are improved in this output file and add them as an extra constraint.
Otherwise, if you prefer to use the entire file, do not use the “-flow readVDSC” command; use
“-constraintFile vsdc.constraint” instead.

A guide_change_names block is also included in the Synopsys VSDC file. It is often useless
and trivial and it would add runtime to FormalPro to implement the commands, but in the
following example, the flow requires unconventional names:

$MGC_HOME/bin/fp_utility vsdc2constraint $FORMALPRO_VSDCFILE \
-cache formalpro.cache -change_names

In some flows, the change_names command is used more than once and the resulting VSDC file
can have two transitions. The following is a complex example:

guide_change_names \
 { cell s_data_ reg[1][0] s_data _regx1xx0x } \
FormalPro Reference Manual, 2018.1298
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

readVSDC Flow File
Using the readVSDC Flow
followed by:

 { cell s_data _regx1xx0x s_data_reg_255 } \

Because of the XX bus naming and it appears this is the basis of the last transition, the RTL
compiler needs to name the arrays with style regx2x.

Add the following to the formalpro command:

-a \
-latchInstMemoryFormat %s_latx%dxx%dx \
-dffInstMemoryFormat %s_regx%dxx%dx \
-latchInstVectorFormat %s_latx%dx \
-dffInstVectorFormat %s_regx%dx \
-arrayNameFormat %sx%dx\

The following sample run required approximately 15 minutes, with 182K lines in the file:

% cp -r /path-DUT/formalpro.cache .
% fp_utility VSDC data.vsdc -change_names -noreg_const -nodup
#Input file is data.vsdc
Found 0 guide_inv_push terms in data.vsdc file
Found 2 guide_change_names terms in data.vsdc file
Found 0 guide_reg_merging terms in data.vsdc file
Reading matched_objects.... ./formalpro.cache/reports/matched_objects.report
Processing VSDC lines ...
#
#Found 0 of 0 reg_constant assignments in VSDC file, ignored 0, 0 were X(dont-care)
#Found 0 of 0 duplicate assignments in VSDC file
#Constraint output file is vsdc.constraint
#Found 66374 non-trivial change_names items from 66374 gross
#Change_names output file is vsdc_change_names.rule
#Copied ./formalpro.cache/inputFiles/FormalPro.rule for insertion of
change_name_rules
#File vsdc_change_names.rule can be used as a full match rule file. use:
formalpro -rulefile vsdc_change_names.rule

Note the last line of comments. That comment is correct, but the file must be edited for at least
one more rule. Adding a pre-process rule that makes the FormalPro database name fit the
expectation of the VSDC initial transform.

… bottom of the new rule file ….
###
BEST PLACE FOR USER ADD-ONS
###
first correct the Generate Loop Index data_0_reg(i)(j) -> data_reg(i)(j)
Ar s/data\.[0-9]*\./data./
#formalpro match rules derived from VSDC guide_change_names
#Place after ### Best Place marker
B s/s\.data.9162/s.data.2xx464x/g
…….
Remainder of the transforms and end of file.
FormalPro Reference Manual, 2018.1 299
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

readVSDC Flow File
Using the readVSDC Flow
FormalPro Reference Manual, 2018.1300
May 2018

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Index
Index

— Symbols —
.ord file, 207
+define switch, 43
+incdir switch, 73
+liborder switch, 77
+librescan switch, 78
+libverbose switch, 78
+noLibCell switch, 90
$FORMALPRO_FLOW, 62

— Numerics —
-31aCompat switch, 24
-87 switch, 24

— A —
addtarget command, 172
-alib switch, 27
-alibF switch, 27
analyze command, 174
-archi ve switch, 28
Archiving run data, 28
-arrayNameFormat switch, 117
ATPG library file

specifying, 27
Auto network learning, 166

— B —
-b switch, 26
BDD memory limit dropdown box, 84
Black box file, 216

specifying, 29
Black box files, 216
Black box instance objects

forcing, 228
ignoring, 231

Black box module objects
forcing, 229

Black box module ports
ignoring, 232

Blackbox command, 216

-blackboxFile switch, 29
-blackboxMemories switch, 257

— C —
Cache directory

for debugging, 166
Cache directory entry box, 31
-cache switch, 31
checkequiv command, 178
-collisionNameFormat switch, 117
Color coding in schematics, 194
Combinational cycles

limiting number reported, 37, 38
Combinational feedback loop, 239
Command line

formalpro, 15
formalpro_fpga, 160
fpdebug, 166
transFVI, 161
transVIF, 163

-commentSynthOffRegions, 33
-commentTransOffRegions, 33
-common switch, 26
-commonCUnitScope switch, 34
Comparing libraries, 254
-configFile switch, 34
constant registers, 63
constant state vector bits, 63
Constraint file, 220

scripting in a, 206
source command, 206
specifying, 34, 35

-constraintFile switch, 34, 35
Constraints

Force command, 227
-convertFloats switch, 36
coverage report, 109
cycle breaking, 239
-cycleCountLimit switch, 37
cycles, 239
301FormalPro Reference Manual, 2018.1
May 2018

-cycleSolve switch, 38

— D —
-debug switch, 42
Design level dropdown box

gate, 66
rtl, 112

Design scope
defined, 26

designFile argument, 43
DFF Scalar entry box, 116
DFF vector entry box, 116
-dffInstMemoryFormat switch, 116
-dffInstScalarFormat switch, 116
-dffInstVectorFormat switch, 116
DFT library suffixes dropdown box, 133
-diff switch, 194
Difference network for debugging, 167
-diffOnQ switch, 45
-diffOnQOnly switch, 46
-dividerArchitecture switch, 47

— E —
EDIF file suffixes

modifying, 131
encapsulateAll, 55
environment variables

$FORMALPRO_FLOW, 62
in -f commandFile, 57
in -fl designFile, 59

extracttarget command, 185

— F —
-f switch, 56, 58, 60, 167
-fl switch, 59
Floating net

converting to a value, 36
defined, 36

floating net, 63
Floating nets dropdown box, 36
Force

black box instance ports, 228
black box module ports, 229
individual nets, 230
multiple instances of a net, 230
registers, 229

top-level ports, 227
Force command, 227
formalEyesAll, 63
formalEyesConstRegs, 63
formalEyesFloat, 63
formalEyesMulti, 63
formalEyesX, 63
formalpro command, 15
FormalPro Library Compiler, 253
formalpro_fpga, 160
formalpro.ini

order file, 207
fpdebug command reference, 166
FPGA tools

formalpro_fpga, 160
licensing, 159
transFVI, 161
transVIF, 163

fplibcomp
accepted formats, 253

fplibcomp executable, 253
FSM encoding, 65
-FSMencoding switch, 65
-fvi switch, 160

— G —
-gate switch, 66
-gatedClock switch, 67
Generics

defining, 69
-generics switch, 69
-gndnet switch, 267, 268
-gndport switch, 267, 268
-gui switch, 69

— H —
-help switch, 70

— I —
Ignore

black box instance objects, 231
black box module objects, 232
registers, 232
top-level module ports, 231

Ignore command, 233
Ignore no path targets button, 72
302
May 2018

FormalPro Reference Manual, 2018.1

-ignoreNoPath switch, 72
-infverVHDLorder switch, 73

— J —
-jnl switch, 168
Journal file, 168

— L —
Latch scalar entry box, 116
Latch vector entry box, 116
-latchInstMemoryFormat switch, 116
-latchInstScalarFormat switch, 116
-latchInstVectorFormat switch, 116
learn command, 187
-libConfigFile switch, 74
-libext switch, 76
Library cells

replacing, 74
Library comparison, 254
Library precompilation, 255
licensing, 159

formalpro, 159
formalpro_fpga, 159
FPGA tools, 159

Log file
redirecting, 79
specifying level, 80

Log file entry box, 79
Logical Libraries

mapping to different names, 154

— M —
Make_pi command, 239
Make_po command, 239
-masterSlaveMerge switch, 81
Match

matching using different phases, 143
registers, 211
top-level module, 211
top-level ports, 211

Match command, 210
Match file

scripting in a, 206
source command, 206
specifying, 82

Match files, 210

Match rules entry box, 26, 118
-match_seq switch, 82
-matchFile switch, 82
Matching

black box instance ports, 212
black box instances, 212
complement match command, 210
creating implicit rules, 207
explicit match commands, 210

Matching algorithms, 82
-memLimit switch, 84
Memory elements

black boxing, 257
Merge Master slave button, 81
Merge Q Q-bar button, 103
Merge Q Q-bar set/reset button, 103
Merge Redundant register button, 105
-merge switch, 194
Merged schematics, 194
-mergeReplicatedReg switch, 85
-mod switch, 85
Multiplier

specifying with a constraint, 237
Multiplierarchitecture command, 237
-multiplierArchitecture switch, 89
multiply driven net contention, 63

— N —
Name collision extension entry box, 117
-nameCollisionExtension switch, 117
Nets

forcing individual nets, 230
forcing multiple instances of a net, 230

networklearn command, 187
-nocommentSynthOffRegions, 33, 34
-nodebug switch, 42
non-toggle registers, 63
no-path registers, 63
-noStopOnMissing switch, 262

— O —
Order file, 207
-overWrite switch, 92

— P —
-PACheck switch, 94
303FormalPro Reference Manual, 2018.1
May 2018

-paConfigAFRLA switch, 97
-paConfigAHRLA switch, 97
-paConfigCFRFF switch, 97
-paConfigCHRFF switch, 96
-paConfigCLRFF switch, 97
-paConfigFile switch, 95
-paConfigISOCELL switch, 97
-paConfigLSHIFTER switch, 97
-paConfigNONE switch, 97
pairgates command, 190
-paLibAFRLA switch, 98
-paLibAHRLA switch, 98
-paLibALRLA switch, 98
-paLibCFRFF switch, 98
-paLibCHRFF switch, 98
-paLibCLRFF switch, 98
Parameters

defining, 93
-parameters switch, 93
Power aware checker

enabling, 94
Power aware switches

-PACheck, 94
-paConfigAFRLA, 97
-paConfigAHRLA, 97
-paConfigCFRFF, 97
-paConfigCHRFF, 96
-paConfigCLRFF, 97
-paConfigFile, 95
-paConfigISOCELL, 97
-paConfigLSHIFTER, 97
-paConfigNONE, 97
-paLibAFRLA, 98
-paLibAHRLA, 98
-paLibALRLA, 98
-paLibCFRFF, 98
-paLibCHRFF, 98
-paLibCLRFF, 98
-upf, 142

pragmas, 33
Precompiling libraries, 255
-propagateDontCare switch, 99
Pruned schematics, 194

— Q —
-QQbarMerge switch, 103

-QQbarSetResetMerge switch, 103

— R —
-recordNameFormat switch, 117
redundant mux logic assignments, 63
-redundantRegMerge, 105
Registers

explicit match, 211
forcing, 229
ignoring, 232

registers, 63
-removeIgnoredOutputs, 106
Reports

comparison, 108
detailed comparison, 108
run statistics, 108

-reports switch, 108
-reportUnmatchedDiffs switch, 106
-restart switch, 108
-resume switch, 110
RTL name

controlling translation, 116
-rtl switch, 112
-rtlMemoryLimit switch, 112, 114
Rule file, 207

specifying, 26, 118
Rule files, 207
-ruleFile switch, 26, 118

— S —
savenetwork command, 193
Schematic viewer

color coding, 194
showschematic command, 194
-simplifyPipelineRegs switch, 120
Size limit dropdown box, 112, 114
-slib switch, 118
-slibF switch, 118
Solve only Q targets button, 46
Solve Q targets button, 45
Solve targets fed by unmatched button, 121
-solvefedbyunmatched switch, 121
Source command, 206
statistics command, 196
-stopAfter switch, 124
-stopOnBlackBox switch, 124, 262
304
May 2018

FormalPro Reference Manual, 2018.1

-stopOnConfigError, 125
-stopOnConstraintError, 126
-stopOnCyclesSwitch, 126
-stopOnDiff switch, 127
-stopOnMissing switch, 128, 262
-stopOnUnmatched switch, 129
-suffixDftLib switch, 133
-suffixEDIF switch, 268
-suffixSynLib switch, 133
-suffixVerilog switch, 131
-suffixVHDL switch, 131
-suffixVlogLib switch, 133
-sv switch, 135, 136, 137
-svFile switch, 138, 139
Synopsys Liberty library

specifying, 118
-synopsysStrictArrayAddress switch, 140
Synthesis library suffixes dropdown box, 133

— T —
-tlist switch, 167
Top level entry box, 85
Top-level module

specifying, 86
Top-level module objects

forcing, 227
Top-level module ports

ignoring, 231
transFVI, 161
transVIF, 163
-treatDivisionAsShift switch, 141
-triInstScalarFormat switch, 116
Tri-state scalar entry box, 116

— U —
undriven net, 63
-upf switch, 142
-useAliasPhases switch, 143
User match entry box, 82

— V —
-v switch, 144, 152
-vddnet switch, 267, 268
-vddport switch, 267
verification coverage

restarting, 109

verification coverage report, 109
Verilog definition statement, 43
Verilog library

specifying, 144, 152
Verilog library extensions entry box, 76
Verilog library suffixes dropdown box, 133
Verilog module

black boxing, 216
Verilog suffixes dropdown box, 131
-verilogFile switch, 146
-version switch, 147
VHDL entity

black boxing, 216
VHDL suffixes dropdown box, 131
-vhdlFile switch, 151
-vlib switch, 144, 152
-vlibF switch, 144, 152
-vlog01 switch, 153
-vlog95 switch, 153
-vmapfile switch, 154

— W —
whatif command, 199
-work switch, 155
-wsp switch, 160

— X —
Xassignment captured, 63

— Y —
-y switch, 156, 157
-ylib switch, 157
-ylibF switch, 157
305FormalPro Reference Manual, 2018.1
May 2018

306
May 2018

FormalPro Reference Manual, 2018.1

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the corresponding
quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by Customer and an authorized
representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties’ entire understanding
relating to the subject matter and supersede all prior or contemporaneous agreements. If Customer does not agree to these
terms and conditions, promptly return or, in the case of Software received electronically, certify destruction of Software and all
accompanying items within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and Mentor
Graphics accepts purchase orders pursuant to this Agreement (each an “Order”), each Order will constitute a contract between
Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this Agreement,
any applicable addenda and the applicable quotation, whether or not those documents are referenced on the Order. Any
additional or conflicting terms and conditions appearing on an Order or presented in any electronic portal or automated order
management system, whether or not required to be electronically accepted, will not be effective unless agreed in writing and
physically signed by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such invoice.
Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half percent per month
or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight, insurance, customs duties, taxes
or other similar charges, which Mentor Graphics will state separately in the applicable invoice. Unless timely provided with a
valid certificate of exemption or other evidence that items are not taxable, Mentor Graphics will invoice Customer for all
applicable taxes including, but not limited to, VAT, GST, sales tax, consumption tax and service tax. Customer will make all
payments free and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments by
Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third party to place purchase orders and/or
make payments on Customer’s behalf, Customer shall be liable for payment under Orders placed by such third party in the event
of default.

1.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software delivered
electronically, which shall be deemed delivered when made available to Customer for download. Mentor Graphics retains a
security interest in all Products delivered under this Agreement, to secure payment of the purchase price of such Products, and
Customer agrees to sign any documents that Mentor Graphics determines to be necessary or convenient for use in filing or
perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means is subject to Customer’s provision
of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement, including any
updates, modifications, revisions, copies, documentation, setup files and design data (“Software”) are copyrighted, trade secret and
confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain all rights not
expressly granted by this Agreement. Except for Software that is embeddable (“Embedded Software”), which is licensed pursuant to
separate embedded software terms or an embedded software supplement, Mentor Graphics grants to Customer, subject to payment of
applicable license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form
(except as provided in Subsection 4.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius. Customer
may have Software temporarily used by an employee for telecommuting purposes from locations other than a Customer office, such as
the employee’s residence, an airport or hotel, provided that such employee’s primary place of employment is the site where the
Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary depending on Software, license fees paid
or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be limited, for example, to
execution of a single session by a single user on the authorized hardware or for a restricted period of time (such limitations may be
technically implemented through the use of authorization codes or similar devices); and (c) support services provided, including
eligibility to receive telephone support, updates, modifications, and revisions. For the avoidance of doubt, if Customer provides any
feedback or requests any change or enhancement to Products, whether in the course of receiving support or consulting services,
evaluating Products, performing beta testing or otherwise, any inventions, product improvements, modifications or developments made
by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the exclusive property of Mentor Graphics.

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S COMPLETE
AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

3. BETA CODE.

3.1. Portions or all of certain Software may contain code for experimental testing and evaluation (which may be either alpha or beta,
collectively “Beta Code”), which may not be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’
authorization, Mentor Graphics grants to Customer a temporary, nontransferable, nonexclusive license for experimental use to
test and evaluate the Beta Code without charge for a limited period of time specified by Mentor Graphics. Mentor Graphics may
choose, at its sole discretion, not to release Beta Code commercially in any form.

3.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under normal
conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation and testing,
Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths, weaknesses and
recommended improvements.

3.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform beta
testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or developments
that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title and
interest in all such property. The provisions of this Subsection 3.3 shall survive termination of this Agreement.

4. RESTRICTIONS ON USE.

4.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all notices
and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All copies shall
remain the property of Mentor Graphics or its licensors. Except for Embedded Software that has been embedded in executable
code form in Customer’s product(s), Customer shall maintain a record of the number and primary location of all copies of
Software, including copies merged with other software, and shall make those records available to Mentor Graphics upon
request. Customer shall not make Products available in any form to any person other than Customer’s employees and on-site
contractors, excluding Mentor Graphics competitors, whose job performance requires access and who are under obligations of
confidentiality. Customer shall take appropriate action to protect the confidentiality of Products and ensure that any person
permitted access does not disclose or use Products except as permitted by this Agreement. Customer shall give Mentor Graphics
written notice of any unauthorized disclosure or use of the Products as soon as Customer becomes aware of such unauthorized
disclosure or use. Customer acknowledges that Software provided hereunder may contain source code which is proprietary and
its confidentiality is of the highest importance and value to Mentor Graphics. Customer acknowledges that Mentor Graphics
may be seriously harmed if such source code is disclosed in violation of this Agreement. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
disassemble, reverse-compile, or reverse-engineer any Product, or in any way derive any source code from Software that is not
provided to Customer in source code form. Log files, data files, rule files and script files generated by or for the Software
(collectively “Files”), including without limitation files containing Standard Verification Rule Format (“SVRF”) and Tcl
Verification Format (“TVF”) which are Mentor Graphics’ trade secret and proprietary syntaxes for expressing process rules,
constitute or include confidential information of Mentor Graphics. Customer may share Files with third parties, excluding
Mentor Graphics competitors, provided that the confidentiality of such Files is protected by written agreement at least as well as
Customer protects other information of a similar nature or importance, but in any case with at least reasonable care. Customer
may use Files containing SVRF or TVF only with Mentor Graphics products. Under no circumstances shall Customer use
Products or Files or allow their use for the purpose of developing, enhancing or marketing any product that is in any way
competitive with Products, or disclose to any third party the results of, or information pertaining to, any benchmark.

4.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct software
errors and enhance or modify the Software for the authorized use, or as permitted for Embedded Software under separate
embedded software terms or an embedded software supplement. Customer shall not disclose or permit disclosure of source
code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or on-site
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code in
any manner except to support this authorized use.

4.3. Customer agrees that it will not subject any Product to any open source software (“OSS”) license that conflicts with this
Agreement or that does not otherwise apply to such Product.

4.4. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense, or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written consent and
payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer without Mentor
Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’ option, result in the
immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms of this Agreement,
including without limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successors in
interest and assigns.

4.5. The provisions of this Section 4 shall survive the termination of this Agreement.

5. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer with updates and
technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor Graphics’ then
current End-User Support Terms located at http://supportnet.mentor.com/supportterms.

6. OPEN SOURCE SOFTWARE. Products may contain OSS or code distributed under a proprietary third party license agreement, to
which additional rights or obligations (“Third Party Terms”) may apply. Please see the applicable Product documentation (including
license files, header files, read-me files or source code) for details. In the event of conflict between the terms of this Agreement

http://supportnet.mentor.com/supportterms

(including any addenda) and the Third Party Terms, the Third Party Terms will control solely with respect to the OSS or third party
code. The provisions of this Section 6 shall survive the termination of this Agreement.

7. LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly installed,
will substantially conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not
warrant that Products will meet Customer’s requirements or that operation of Products will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Customer must
notify Mentor Graphics in writing of any nonconformity within the warranty period. For the avoidance of doubt, this warranty
applies only to the initial shipment of Software under an Order and does not renew or reset, for example, with the delivery of (a)
Software updates or (b) authorization codes or alternate Software under a transaction involving Software re-mix. This warranty
shall not be valid if Products have been subject to misuse, unauthorized modification, improper installation or Customer is not in
compliance with this Agreement. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE
REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON
RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE
PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA CODE; ALL OF
WHICH ARE PROVIDED “AS IS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

8. LIMITATION OF LIABILITY. TO THE EXTENT PERMITTED UNDER APPLICABLE LAW, IN NO EVENT SHALL
MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES (INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS
AGREEMENT EXCEED THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS
LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8
SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

9. THIRD PARTY CLAIMS.

9.1. Customer acknowledges that Mentor Graphics has no control over the testing of Customer’s products, or the specific
applications and use of Products. Mentor Graphics and its licensors shall not be liable for any claim or demand made against
Customer by any third party, except to the extent such claim is covered under Section 10.

9.2. In the event that a third party makes a claim against Mentor Graphics arising out of the use of Customer’s products, Mentor
Graphics will give Customer prompt notice of such claim. At Customer’s option and expense, Customer may take sole control
of the defense and any settlement of such claim. Customer WILL reimburse and hold harmless Mentor Graphics for any
LIABILITY, damages, settlement amounts, costs and expenses, including reasonable attorney’s fees, incurred by or awarded
against Mentor Graphics or its licensors in connection with such claims.

9.3. The provisions of this Section 9 shall survive any expiration or termination of this Agreement.

10. INFRINGEMENT.

10.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product acquired
by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics
will pay costs and damages finally awarded against Customer that are attributable to such action. Customer understands and
agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify Mentor Graphics
promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the
action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.

10.2. If a claim is made under Subsection 10.1 Mentor Graphics may, at its option and expense: (a) replace or modify the Product so
that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return of the
Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

10.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with any
product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the use of
other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a product that
Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided by Mentor
Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; (h) OSS, except to the extent that
the infringement is directly caused by Mentor Graphics’ modifications to such OSS; or (i) infringement by Customer that is
deemed willful. In the case of (i), Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other costs
related to the action.

10.4. THIS SECTION 10 IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS, AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, FOR DEFENSE,

SETTLEMENT AND DAMAGES, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

11. TERMINATION AND EFFECT OF TERMINATION.

11.1. If a Software license was provided for limited term use, such license will automatically terminate at the end of the authorized
term. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon
written notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement
upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of this Agreement
or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or licenses granted prior to
the termination, which amounts shall be payable immediately upon the date of termination.

11.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination of this Agreement and/or any license granted under this Agreement, Customer shall ensure that
all use of the affected Products ceases, and shall return hardware and either return to Mentor Graphics or destroy Software in
Customer’s possession, including all copies and documentation, and certify in writing to Mentor Graphics within ten business
days of the termination date that Customer no longer possesses any of the affected Products or copies of Software in any form.

12. EXPORT. The Products provided hereunder are subject to regulation by local laws and European Union (“E.U.”) and United States
(“U.S.”) government agencies, which prohibit export, re-export or diversion of certain products, information about the products, and
direct or indirect products thereof, to certain countries and certain persons. Customer agrees that it will not export or re-export Products
in any manner without first obtaining all necessary approval from appropriate local, E.U. and U.S. government agencies. If Customer
wishes to disclose any information to Mentor Graphics that is subject to any E.U., U.S. or other applicable export restrictions, including
without limitation the U.S. International Traffic in Arms Regulations (ITAR) or special controls under the Export Administration
Regulations (EAR), Customer will notify Mentor Graphics personnel, in advance of each instance of disclosure, that such information
is subject to such export restrictions.

13. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. The parties agree that all Software is
commercial computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to U.S. FAR 48
CFR 12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. government or a U.S.
government subcontractor is subject solely to the terms and conditions set forth in this Agreement, which shall supersede any
conflicting terms or conditions in any government order document, except for provisions which are contrary to applicable mandatory
federal laws.

14. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation and
other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

15. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and during
Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to review Customer’s
software monitoring system and records deemed relevant by the internationally recognized accounting firm to confirm Customer’s
compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include FlexNet (or successor
product) report log files that Customer shall capture and provide at Mentor Graphics’ request. Customer shall make records available in
electronic format and shall fully cooperate with data gathering to support the license review. Mentor Graphics shall bear the expense of
any such review unless a material non-compliance is revealed. Mentor Graphics shall treat as confidential information all information
gained as a result of any request or review and shall only use or disclose such information as required by law or to enforce its rights
under this Agreement. The provisions of this Section 15 shall survive the termination of this Agreement.

16. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics intellectual
property licensed under this Agreement are located in Ireland and the U.S. To promote consistency around the world, disputes shall be
resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and construed under the laws of the State of
Oregon, U.S., if Customer is located in North or South America, and the laws of Ireland if Customer is located outside of North or
South America or Japan, and the laws of Japan if Customer is located in Japan. All disputes arising out of or in relation to this
Agreement shall be submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin,
Ireland when the laws of Ireland apply, or the Tokyo District Court when the laws of Japan apply. Notwithstanding the foregoing, all
disputes in Asia (excluding Japan) arising out of or in relation to this Agreement shall be resolved by arbitration in Singapore before a
single arbitrator to be appointed by the chairman of the Singapore International Arbitration Centre (“SIAC”) to be conducted in the
English language, in accordance with the Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be
incorporated by reference in this section. Nothing in this section shall restrict Mentor Graphics’ right to bring an action (including for
example a motion for injunctive relief) against Customer in the jurisdiction where Customer’s place of business is located. The United
Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

17. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable or
illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.

18. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all prior
or contemporaneous agreements. Any translation of this Agreement is provided to comply with local legal requirements only. In the
event of a dispute between the English and any non-English versions, the English version of this Agreement shall govern to the extent
not prohibited by local law in the applicable jurisdiction. This Agreement may only be modified in writing, signed by an authorized
representative of each party. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent consent, waiver
or excuse.

Rev. 170330, Part No. 270941

	InfoHub
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Command Line Syntax Conventions
	Related Publications

	Chapter 2 Command Reference
	formalpro Command
	formalpro Command Options
	-31aCompat
	-87 | -93 | -2008
	-a, -b, -common
	-addRuleFile
	-alib, -alibF
	-archive
	-blackboxFile
	-bufifenable
	-cache
	-checkArrayOffsets
	-noCheckResources
	-commentSynthOffRegions
	-commentTransOffRegions
	-CommonCUnitScope
	-configFile
	-constraintFile
	-convertFloats
	-cycleCountLimit
	-cycleSolve
	-dataPath
	-dataPathModules
	-debug
	+define+definition[=value]
	designFile
	-dffWithEnable
	-diffOnQ
	-diffOnQOnly
	-dividerArchitecture
	-DWPipeTransparent
	-eco
	-ecoDir
	-edifFile
	-encapsulateAll
	-f
	-fastVerilogRead
	-fl
	-flow
	-formalEyes
	-fpga
	-FSMencoding
	-gate
	-gatedClocks
	-noGateOptimization
	-generics
	-gui
	-help
	-noheuristicNameLookup
	-ignoreNoPath
	-inferVHDLorder
	+incdir
	-libConfigFile
	-LibertyPGpins
	+libext
	+liborder
	+librescan
	+libVerbose
	-log
	-logLevel
	-masterSlaveMerge
	-matchFile
	-matchseq
	-memLimit
	-mergeReplicatedReg
	-mod
	-mp
	-mpLimit
	-mpTimeLimit
	-multiplierArchitecture
	+noLibCell
	-optimizeEqOpers
	-noOverWrite
	-parameters
	-PACheck
	-paConfigFile
	-paConfig<pa_type>
	-paLib<pa_type>
	-propagateDontCare
	-partialSumCheck
	-pruneMuxAheadOfLatch
	-QQbarMerge
	-QQbarSetResetMerge
	-queueLicense
	-redundantRegMerge
	-removeIgnoredOutputs
	-reportUnmatchedDiffs
	-reports
	-restart
	-resume
	-retime
	-rtl
	-rtlIgnoreNoPathBBIns
	-rtlIgnoreVHDLComponentError
	-rtlMemoryLimit
	-rtlSimWarnings
	-rtlTreatDeclAsassign
	RTL Naming Control
	-ruleFile
	-slib, -slibF
	-simplifyPipelineRegs
	-solveFedByUnmatched
	-solveOrder
	-solveTimeLimit
	-stopAfter
	-stopOnBlackBox
	-stopOnConfigError
	-stopOnConstraintError
	-stopOnCycles
	-stopOnDiff
	-stopOnMissing
	-stopOnUnmatched
	-strategy
	Suffix Control Switches (Design Files)
	Suffix Control Switches (Library Files)
	-suppress
	-sv
	-sv2005
	-sv2009
	-svFile
	-sv2005File
	-sv2009File
	-synopsysStrictArrayAddress
	-tlist
	-treatDivisionAsShift
	-upf
	-useAliasPhases
	-v
	-verifyTristate
	-verilogFile
	-version
	-vcsCompat
	-vhdl2008File
	-vhdlFile
	-vlibF
	-vlog95 | -vlog01
	-vmapfile
	-work
	-y
	-ylibF

	Chapter 3 FPGA Tools
	formalpro_fpga
	transFVI
	transVIF

	Chapter 4 Debugger Commands
	fpdebug Command
	Debugger Shell Commands
	addtarget
	analyze
	btc
	checkequiv
	drives
	eqnetreport
	extracteco
	extracttarget
	help
	networklearn
	nodeinfo
	pairgates
	pinpointreport
	quit
	savenetwork
	showschematic
	statistics
	syntax
	tdvr
	whatif

	Chapter 5 Input File Syntax
	Constraint and Match File Scripts
	VHDL Read Order File
	Options Applied Based on Platform

	Rule Files
	Match Files
	Black Box Files
	blackbox, encapsulate, and noencapsulate
	dpAddGroup

	Constraint Files
	assert
	complement
	duplicate and duplicate_compl
	eco_correspond
	force
	ignore
	no_match
	transparent
	tie and tie_compl
	multiplierarchitecture
	make_pi and make_po
	Don’t Care

	Configuration Files
	encode
	partial_sum_checker
	port_direction

	Appendix A FormalPro Library Compiler
	Comparing Libraries
	Precompiling Libraries
	fplibcomp

	Simple Verilog Format

	Appendix B Using EDIF Design Files
	Specifying Nets and Ports as Power or Ground
	Specifying Design File Suffixes
	Compiled EDIF Designs
	Special Processing Rules

	Appendix C FormalPro Utilities
	fp_utility

	Appendix D Supported VHDL2008 Constructs
	Conditional and Selected Sequential Assignments
	Simplified Case Expression Support
	Unconstrained Element Support
	Context Declarations
	Extensions to Generate
	Standard Packages
	Updates in Standard Package
	Updates in Std_logic_1164 Package
	Updates in Numeric packages

	Fixed Point Package
	Float Point Package
	Expressions Port Map
	Read Out Ports
	Simplified Sensitivity List
	Block Comments
	Matching Case Statement
	Array-Scalar Operators
	Logical Reduction Operators
	Matching Relational Operators
	Conditional Operator Support
	Maximum and Minimum Function Support
	Unconstrained Record Elements
	Type Generics
	Generic List
	Bit String Literal
	Resolved Element Support

	Appendix E readVSDC Flow File
	Using the readVSDC Flow

	Index
	End-User License Agreement
	Documentation Feedback

