This example shows how to construct discriminant analysis classifiers in the
Classification Learner app, using the fisheriris
data set. You can
use discriminant analysis with two or more classes in Classification Learner.
In MATLAB®, load the fisheriris
data set.
fishertable = readtable('fisheriris.csv');
On the Apps tab, in the Machine Learning and Deep Learning group, click Classification Learner.
On the Classification Learner tab, in the File section, click New Session > From Workspace.
In the New Session dialog box, select the table fishertable
from the Data Set Variable list (if necessary). Observe
that the app has selected response and predictor variables based on their data
type. Petal and sepal length and width are predictors, and species is the
response that you want to classify. For this example, do not change the
selections.
Click Start Session.
Classification Learner creates a scatter plot of the data.
Use the scatter plot to visualize which variables are useful for predicting the response. Select different variables in the X- and Y-axis controls. Observe which variables separate the classes most clearly.
To train both nonoptimizable discriminant analysis classifiers, on the Classification Learner tab, in the Model Type section, click the down arrow to expand the list of classifiers, and under Discriminant Analysis, click All Discriminants.
Then click Train
.
Tip
If you have Parallel Computing Toolbox™ then the first time you click Train you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.
Classification Learner trains one of each classification option in the gallery, linear and quadratic discriminants, and highlights the best score. The app outlines in a box the Accuracy score of the best model.
Select a model in the History list to view the results. Examine the scatter plot for the trained model and try plotting different predictors. Misclassified points are shown as an X.
To inspect the accuracy of the predictions in each class, on the Classification Learner tab, in the Plots section, click Confusion Matrix. View the matrix of true class and predicted class results.
Select the other model in the list to compare.
For information on the strengths of different model types, see Discriminant Analysis.
Choose the best model in the History list (the best score is highlighted in a box). To improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.
On the Classification Learner tab, in the Features section, click Feature Selection. In the Feature Selection dialog box, specify predictors to remove from the model, and click Train to train a new model using the new options. Compare results among the classifiers in the History list.
To investigate features to include or exclude, use the parallel coordinates plot. On the Classification Learner tab, in the Plots section, select Parallel Coordinates Plot.
Choose the best model in the History list. To try to improve the model further, try changing classifier settings. On the Classification Learner tab, in the Model Type section, click Advanced. Try changing a setting, then train the new model by clicking Train. For information on settings, see Discriminant Analysis.
To export the trained model to the workspace, select the Classification Learner tab and click Export model. See Export Classification Model to Predict New Data.
To examine the code for training this classifier, click Generate Function.
Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.
To try all the nonoptimizable classifier model presets available for your data set:
Click the arrow on the far right of the Model Type section to expand the list of classifiers.
Click All, then click Train.
To learn about other classifier types, see Train Classification Models in Classification Learner App.