Choose among various algorithms to train and validate regression models. After training multiple models, compare their validation errors side-by-side, and then choose the best model. To help you decide which algorithm to use, see Train Regression Models in Regression Learner App.
This flow chart shows a common workflow for training regression models in the Regression Learner app.
Regression Learner | Train regression models to predict data using supervised machine learning |
Train Regression Models in Regression Learner App
Workflow for training, comparing and improving regression models, including automated, manual, and parallel training.
Select Data and Validation for Regression Problem
Import data into Regression Learner from the workspace or files, find example data sets, and choose cross-validation or holdout validation options.
Choose Regression Model Options
In Regression Learner, automatically train a selection of models, or compare and tune options of linear regression models, regression trees, support vector machines, Gaussian process regression models, and ensembles of regression trees.
Assess Model Performance in Regression Learner
Compare model statistics and visualize results.
Export Regression Model to Predict New Data
After training in Regression Learner, export models to the workspace or generate MATLAB® code.
Train Regression Trees Using Regression Learner App
Create and compare regression trees, and export trained models to make predictions for new data.
Feature Selection and Feature Transformation Using Regression Learner App
Identify useful predictors using plots, manually select features to include, and transform features using PCA in Regression Learner.
Hyperparameter Optimization in Regression Learner App
Automatically tune hyperparameters of regression models by using hyperparameter optimization.
Train Regression Model Using Hyperparameter Optimization in Regression Learner App
Train a regression ensemble model with optimized hyperparameters.
Export Plots in Regression Learner App
Export and customize plots created before and after training.