Polynomial confidence intervals
Y = polyconf(p,X)
[Y,DELTA] = polyconf(p,X,S)
[Y,DELTA] = polyconf(p,X,S,param1
,val1
,param2
,val2
,...)
Y = polyconf(p,X)
evaluates
the polynomial p
at the values in X
. p
is
a vector of coefficients in descending powers.
[Y,DELTA] = polyconf(p,X,S)
takes
outputs p
and S
from polyfit
and generates 95% prediction
intervals Y ± DELTA
for new observations at
the values in X
.
[Y,DELTA] = polyconf(p,X,S,
specifies
optional parameter name/value pairs chosen from the following list.param1
,val1
,param2
,val2
,...)
Parameter | Value |
---|---|
'alpha' | A value between 0 and 1 specifying a confidence level
of |
'mu' | A two-element vector containing centering and scaling
parameters. With this option, |
'predopt' | Either |
'simopt' | Either |
The 'predopt'
and 'simopt'
parameters
can be understood in terms of the following functions:
p(x) — the unknown mean function estimated by the fit
l(x) — the lower confidence bound
u(x) — the upper confidence bound
Suppose you make a new observation yn+1 at xn+1, so that
yn+1(xn+1) = p(xn+1) + εn+1
By default, the interval [ln+1(xn+1), un+1(xn+1)] is a 95% confidence bound on yn+1(xn+1).
The following combinations of the 'predopt'
and 'simopt'
parameters
allow you to specify other bounds.
'simopt' | 'predopt' | Bounded Quantity |
---|---|---|
'off' | 'observation' | yn+1(xn+1) (default) |
'off' | 'curve' | p(xn+1) |
'on' | 'observation' | yn+1(x), for all x |
'on' | 'curve' | p(x), for all x |
In general, 'observation'
intervals are wider
than 'curve'
intervals, because of the additional
uncertainty of predicting a new response value (the curve plus random
errors). Likewise, simultaneous intervals are wider than nonsimultaneous
intervals, because of the additional uncertainty of bounding values
for all predictors x.