Regression error for Gaussian process regression model
L = loss(gprMdl,Xnew,Ynew)
L = loss(gprMdl,Xnew,Ynew,Name,Value)
returns
the mean squared error for the Gaussian process regression (GPR) model L
= loss(gprMdl
,Xnew
,Ynew
)gpr
,
using the predictors in Xnew
and observed response
in Ynew
.
returns
the mean squared error for the GPR model, L
= loss(gprMdl
,Xnew
,Ynew
,Name,Value
)gpr
,
with additional options specified by one or more Name,Value
pair
arguments. For example, you can specify a custom loss function or
the observation weights.
You can use resubLoss
to compute the regression error
for the trained GPR model at the observations in the training data.
compact
| CompactRegressionGP
| fitrgp
| predict
| RegressionGP
| resubLoss