Cross validate ensemble
cvens = crossval(ens)
cvens = crossval(ens,Name,Value)
creates
a cross-validated ensemble from cvens
= crossval(ens
)ens
, a classification
ensemble. Default is 10-fold cross validation.
creates
a cross-validated ensemble with additional options specified by one
or more cvens
= crossval(ens
,Name,Value
)Name,Value
pair arguments. You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN
.
|
A classification ensemble created with |
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
|
A partition of class Use no more than one of the name-value pairs |
|
Holdout validation tests the specified fraction of the data,
and uses the rest of the data for training. Specify a numeric scalar
from |
|
Number of folds for cross validation, a numeric positive scalar greater than 1. Use no more than one of the name-value pairs |
|
If Use no more than one of the name-value pairs |
|
Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-validation folds. Default: |
|
A cross-validated classification ensemble of class |
You can create a cross-validation ensemble directly from the data, instead of creating an
ensemble followed by a cross-validation ensemble. To do so, include one of these five
options in fitcensemble
:
'crossval'
, 'kfold'
,
'holdout'
, 'leaveout'
, or
'cvpartition'
.