This example shows how to perform statistical analysis on a set of S-parameter data files using magnitude, mean, and standard deviation (STD). First, read twelve S-parameter files representing twelve similar RF filters into the MATLAB® workspace and plot them. Next, plot and analyze the passband response of these filters to ensure they meet statistical norms.
Use built-in RF Toolbox functions for reading a set of S-Parameter data files. For each filter, collect and plot the S21 raw values and S21 dB values. The names of the files are AWS_Filter_1.s2p through AWS_Filter_12.s2p. These files represent 12 passband filters with similar specifications.
numfiles = 12; filename = "AWS_Filter_"+(1:numfiles)+".s2p"; % Construct filenames S = sparameters(filename(1)); % Read file #1 for initial set-up freq = S.Frequencies; % Frequency values are the same for all files numfreq = numel(freq); % Number of frequency points s21_data = zeros(numfreq,numfiles); % Preallocate for speed % Read Touchstone files for n = 1:numfiles S = sparameters(filename(n)); s21 = rfparam(S,2,1); s21_data(:,n) = s21; end s21_db = 20*log10(abs(s21_data)); figure plot(freq/1e9,s21_db) xlabel('Frequency (GHz)'); ylabel('Filter Response (dB)'); title('Transmission performance of 12 filters'); axis on; grid on;
In this section, find, store and plot the S21 data from just the AWS downlink band (2.11 to 2.17 GHz).
idx = (freq >= 2.11e9) & (freq <= 2.17e9); s21_pass_data = s21_data(idx,:); s21_pass_db = s21_db(idx,:); freq_pass_ghz = freq(idx)/1e9; % Normalize to GHz plot(freq_pass_ghz,s21_pass_db) xlabel('Frequency (GHz)'); ylabel('Filter Response (dB)'); title('Passband variation of 12 filters'); axis([min(freq_pass_ghz) max(freq_pass_ghz) -1 0]); grid on;
Perform Statistical analysis on the magnitude and phase of all passband S21 data sets. This determines if the data follows a normal distribution and if there is outlier data.
abs_S21_pass_freq = abs(s21_pass_data);
Calculate the mean and STD of the magnitude of the entire passband S21 data set.
mean_abs_S21 = mean(abs_S21_pass_freq,'all')
mean_abs_S21 = 0.9289
std_abs_S21 = std(abs_S21_pass_freq(:))
std_abs_S21 = 0.0104
Calculate the mean and STD of the passband magnitude response at each frequency point. This determines if the data follows a normal distribution.
mean_abs_S21_freq = mean(abs_S21_pass_freq,2); std_abs_S21_freq = std(abs_S21_pass_freq,0,2);
Plot all the raw passband magnitude data as a function of frequency, as well as the upper and lower limits defined by the basic statistical analysis.
plot(freq_pass_ghz,mean_abs_S21_freq,'m') hold on; plot(freq_pass_ghz,mean_abs_S21_freq + 2*std_abs_S21_freq,'r') plot(freq_pass_ghz,mean_abs_S21_freq - 2*std_abs_S21_freq,'k') legend('Mean','Mean + 2*STD','Mean - 2*STD'); plot(freq_pass_ghz,abs_S21_pass_freq,'c','HandleVisibility','off') grid on; axis([min(freq_pass_ghz) max(freq_pass_ghz) 0.9 1]); ylabel('Magnitude S21'); xlabel('Frequency (GHz)'); title('S21 (Magnitude) - Statistical Analysis'); hold off;
Plot a histogram for the passband magnitude data. This determines if the upper and lower limits of the data follow a normal distribution.
histfit(abs_S21_pass_freq(:)) grid on; axis([0.8 1 0 100]); xlabel('Magnitude S21'); ylabel('Distribution'); title('Compare filter passband response vs. a normal distribution');
Calculate the phase response of the passband S21 data, then the per-frequency mean and standard deviation of the phase response. All the passband S21 phase data is then collected into a single vector for later analysis.
pha_s21 = angle(s21_pass_data)*180/pi; mean_pha_S21 = mean(pha_s21,2); std_pha_S21 = std(pha_s21,0,2); all_pha_data = reshape(pha_s21.',numel(pha_s21),1);
Plot all the raw passband phase data as a function of frequency, as well as the upper and lower limits defined by the basic statistical analysis.
plot(freq_pass_ghz,mean_pha_S21,'m') hold on; plot(freq_pass_ghz,mean_pha_S21 + 2*std_pha_S21,'r') plot(freq_pass_ghz,mean_pha_S21 - 2*std_pha_S21,'k') legend('Mean','Mean + 2*STD','Mean - 2*STD'); plot(freq_pass_ghz,pha_s21,'c','HandleVisibility','off') grid on; axis([min(freq_pass_ghz) max(freq_pass_ghz) -180 180]); ylabel('Phase S21'); xlabel('Frequency (GHz)'); title('S21 (Phase) - Statistical Analysis'); hold off;
Plot a histogram for the passband phase data. This determines if the upper and lower limits of the data follow a uniform distribution.
histogram(all_pha_data,35) grid on; xlim([-180 180]); xlabel('Phase S21 (degrees)'); ylabel('Distribution'); title('Histogram of the filter phase response');
Perform ANOVA on the magnitude of the passband S21 data.
anova1(abs_S21_pass_freq.',freq_pass_ghz);
ylabel('Magnitude S21') xlabel('Frequency (GHz)') ax1 = gca; ax1.XTick = 0.5:10:120.5; ax1.XTickLabel = {2.11,'',2.12,'',2.13,'',2.14,'',2.15,'',2.16,'',2.17}; title('Analysis of variance (ANOVA) of passband S21 magnitude response'); grid on;
Perform ANOVA on the phase of the passband S21 data.
anova1(pha_s21.',freq_pass_ghz);
ylabel('Phase S21 (degrees)') xlabel('Frequency (GHz)') ax2 = gca; ax2.XTick = 0.5:10:120.5; ax2.XTickLabel = {2.11,'',2.12,'',2.13,'',2.14,'',2.15,'',2.16,'',2.17}; title('Analysis of variance (ANOVA) of passband S21 phase response'); grid on;
Perform a curve fit of the S21 phase data using a linear regression model.
x = repmat(freq_pass_ghz,numfiles,1);
y = all_pha_data;
phase_s21_fit = fit(x,y,'poly1')
phase_s21_fit = Linear model Poly1: phase_s21_fit(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = -310.8 (-500.9, -120.6) p2 = 665.3 (258.3, 1072)
Plot the linear regression model of the S21 phase data.
plot(phase_s21_fit,x,y) p = polyfit(x,y,1); linear_model = sprintf('y = %f x + %f',p(1),p(2)); text(2.115,135,linear_model); ylabel('Phase S21 (degrees)'); xlabel('Frequency (GHz)'); title('Fitted Curve of S21 Phase Data');