This example shows how to design a model predictive controller with nonzero nominal values.
The plant model is obtained by linearization of a nonlinear plant in Simulink® at a nonzero steady-state operating point.
To run this example, Simulink and Simulink Control Design™ are required.
if ~mpcchecktoolboxinstalled('simulink') disp('Simulink is required to run this example.') return end if ~mpcchecktoolboxinstalled('slcontrol') disp('Simulink Control Design is required to run this example.') return end
The nonlinear plant is implemented in Simulink model mpc_nloffsets
and linearized at the default operating condition using the linearize
function from Simulink Control Design.
Create operating point specification for the current model initial condition.
plant_mdl = 'mpc_nloffsets';
op = operspec(plant_mdl);
Compute the operating point for this initial condition.
[op_point, op_report] = findop(plant_mdl,op);
Operating point search report: --------------------------------- Operating point search report for the Model mpc_nloffsets. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) mpc_nloffsets/Integrator x: 0.575 dx: -1.82e-14 (0) (2.) mpc_nloffsets/Integrator2 x: 2.15 dx: -8.38e-12 (0) Inputs: ---------- (1.) mpc_nloffsets/In1 u: -1.25 [-Inf Inf] Outputs: ---------- (1.) mpc_nloffsets/Out1 y: -0.529 [-Inf Inf]
Extract nominal state, output, and input values from the computed operating point.
x0 = [op_report.States(1).x;op_report.States(2).x]; y0 = op_report.Outputs.y; u0 = op_report.Inputs.u;
Linearize the plant at the initial condition.
plant = linearize(plant_mdl,op_point);
Create an MPC controller object with a specified sample time Ts
, prediction horizon p
, and control horizon m
.
Ts = 0.1; p = 20; m = 3; mpcobj = mpc(plant,Ts,p,m);
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000. -->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000. -->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
Set the nominal values in the controller.
mpcobj.Model.Nominal = struct('X',x0,'U',u0,'Y',y0);
Set the output measurement noise model (white noise, zero mean, variance = 0.01).
mpcobj.Model.Noise = 0.1;
Set the manipulated variable constraint.
mpcobj.MV.Max = 0.2;
Specify the reference value for the output signal.
r0 = 1.5*y0;
Open and simulate the model.
mdl = 'mpc_offsets';
open_system(mdl)
sim(mdl)
-->Converting model to discrete time. -->Assuming output disturbance added to measured output channel #1 is integrated white noise.
sim
CommandSimulate the controller.
Tf = round(10/Ts); r = r0*ones(Tf,1); [y1,t1,u1,x1,xmpc1] = sim(mpcobj,Tf,r);
Plot and compare the simulation results.
subplot(1,2,1) plot(y.time,y.signals.values,t1,y1,t1,r) legend('Nonlinear','Linearized','Reference') title('output') grid subplot(1,2,2) plot(u.time,u.signals.values,t1,u1) legend('Nonlinear','Linearized') title('input') grid
bdclose(plant_mdl) bdclose(mdl)