This example shows how to use the mpcmoveCodeGeneration
command to generate C code to compute optimal MPC control moves for real-time applications.
The plant is a single-input, single-output, stable, 2nd order linear plant.
plant = tf(5,[1 0.8 3]);
Convert the plant to discrete-time, state-space form, and specify a zero initial states vector.
Ts = 1; plant = ss(c2d(plant,Ts)); x0 = zeros(size(plant.B,1),1);
Create an MPC controller with default horizons.
mpcobj = mpc(plant,Ts);
-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10. -->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2. -->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000. -->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000. -->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
Specify controller tuning weights.
mpcobj.Weights.MV = 0; mpcobj.Weights.MVrate = 0.5; mpcobj.Weights.OV = 1;
Specify initial constraints on the manipulated variable and plant output. These constraints will be updated at run time.
mpcobj.MV.Min = -1; mpcobj.MV.Max = 1; mpcobj.OV.Min = -1; mpcobj.OV.Max = 1;
mpcmove
CommandIn the closed-loop simulation, constraints are updated and fed into the mpcmove
command at each control interval.
yMPCMOVE = []; uMPCMOVE = [];
Set the simulation time.
Tsim = 20;
Initialize the online constraint data.
MVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ... 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1]; MVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ... 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1]; OVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ... 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1]; OVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ... 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
Initialize plant states.
x = x0;
Initialize MPC states.
xmpc = mpcstate(mpcobj);
-->Assuming output disturbance added to measured output channel #1 is integrated white noise. -->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
Run a closed-loop simulation by calling mpcmove
in a loop.
options = mpcmoveopt; for ct = 1:round(Tsim/Ts)+1 % Update and store plant output. y = plant.C*x; yMPCMOVE = [yMPCMOVE y]; % Update constraints. options.MVMin = MVMinData(ct); options.MVMax = MVMaxData(ct); options.OutputMin = OVMinData(ct); options.OutputMax = OVMaxData(ct); % Compute control actions. u = mpcmove(mpcobj,xmpc,y,1,[],options); % Update and store plant state. x = plant.A*x + plant.B*u; uMPCMOVE = [uMPCMOVE u]; end
mpcmoveCodeGeneration
CommandTo prepare for generating code that computes optimal control moves from MATLAB, it is recommended to reproduce the same control results with the mpcmoveCodeGeneration
command before using the codegen
command from the MATLAB Coder product.
yCodeGen = []; uCodeGen = [];
Initialize plant states.
x = x0;
Create data structures to use with mpcmoveCodeGeneration using
getCodeGenerationData
.
[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj);
Run a closed-loop simulation by calling mpcmoveCodeGeneration
in a loop.
for ct = 1:round(Tsim/Ts)+1 % Update and store plant output. y = plant.C*x; yCodeGen = [yCodeGen y]; % Update measured output in online data. onlinedata.signals.ym = y; % Update reference in online data. onlinedata.signals.ref = 1; % Update constraints in online data. onlinedata.limits.umin = MVMinData(ct); onlinedata.limits.umax = MVMaxData(ct); onlinedata.limits.ymin = OVMinData(ct); onlinedata.limits.ymax = OVMaxData(ct); % Compute control actions. [u,statedata] = mpcmoveCodeGeneration(coredata,statedata,onlinedata); % Update and store plant state. x = plant.A*x + plant.B*u; uCodeGen = [uCodeGen u]; end
The simulation results are identical to those using mpcmove
.
t = 0:Ts:Tsim; figure; subplot(1,2,1) plot(t,yMPCMOVE,'--*',t,yCodeGen,'o'); grid legend('mpcmove','codegen') title('Plant Output') subplot(1,2,2) plot(t,uMPCMOVE,'--*',t,uCodeGen,'o'); grid legend('mpcmove','codegen') title('Controller Moves')
mpcmoveCodeGeneration
CommandTo generate C code from the mpcmoveCodeGeneration
command, use the codegen
command from the MATLAB Coder product. In this example, generate a MEX function mpcmoveMEX
to reproduce the simulation results in MATLAB. You can change the code generation target to C/C++ static library, dynamic library, executable, etc. by using a different set of coder.config
settings.
When generating C code for the mpcmoveCodeGeneration
command:
Since no data integrity checks are performed on the input arguments, you must make sure that all the input data has the correct types, dimensions, and values.
You must define the first input argument, mpcmove_struct
, as a constant when using the codegen
command.
The second input argument, mpcmove_state
, is updated by the command and returned as the second output. In most cases, you do not need to modify its contents and should simply pass it back to the command in the next control interval. The only exception is when custom state estimation is enabled, in which case you must provide the current state estimation using this argument.
if ~license ('test', 'MATLAB_Coder') disp('MATLAB Coder(TM) is required to run this example.') return end
Generate MEX function.
fun = 'mpcmoveCodeGeneration'; funOutput = 'mpcmoveMEX'; Cfg = coder.config('mex'); Cfg.DynamicMemoryAllocation = 'off'; codegen('-config',Cfg,fun,'-o',funOutput,'-args',... {coder.Constant(coredata),statedata,onlinedata});
Initialize data storage.
yMEX = []; uMEX = [];
Initialize plant states.
x = x0;
Use getCodeGenerationData
to create data structures to use with mpcmoveCodeGeneration
.
[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj);
Run a closed-loop simulation by calling the generated mpcmoveMEX
functions in a loop.
for ct = 1:round(Tsim/Ts)+1 % Update and store the plant output. y = plant.C*x; yMEX = [yMEX y]; % Update measured output in online data. onlinedata.signals.ym = y; % Update reference in online data. onlinedata.signals.ref = 1; % Update constraints in online data. onlinedata.limits.umin = MVMinData(ct); onlinedata.limits.umax = MVMaxData(ct); onlinedata.limits.ymin = OVMinData(ct); onlinedata.limits.ymax = OVMaxData(ct); % Compute control actions. [u,statedata] = mpcmoveMEX(coredata,statedata,onlinedata); % Update and store the plant state. x = plant.A*x + plant.B*u; uMEX = [uMEX u]; end
The simulation results are identical to those using mpcmove
.
figure subplot(1,2,1) plot(t,yMPCMOVE,'--*',t,yMEX,'o') grid legend('mpcmove','mex') title('Plant Output') subplot(1,2,2) plot(t,uMPCMOVE,'--*',t,uMEX,'o') grid legend('mpcmove','mex') title('Controller Moves')
getCodeGenerationData
| mpcmoveCodeGeneration