Psi (polygamma) function
Y = psi(X)
Y = psi(k,X)
Y = psi(X)
evaluates the ψ function
for each element of array X
. X
must
be real and nonnegative. The ψ function,
also known as the digamma function, is the logarithmic derivative
of the gamma function
Y = psi(k,X)
evaluates
the k
th derivative of ψ at
the elements of X
. psi(0,X)
is
the digamma function, psi(1,X)
is the trigamma
function, psi(2,X)
is the tetragamma function,
etc.
Use the psi
function to calculate Euler's
constant, γ.
format long -psi(1) ans = 0.57721566490153 -psi(0,1) ans = 0.57721566490153
The trigamma function of 2, psi(1,2)
, is
the same as (π2/6) – 1.
format long psi(1,2) ans = 0.64493406684823 pi^2/6 - 1 ans = 0.64493406684823
[1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, Sections 6.3 and 6.4.