Histogram appearance and behavior
Histogram properties control the appearance and behavior of the histogram. By changing property values, you can modify aspects of the histogram. Use dot notation to refer to a particular object and property:
h = histogram(randn(10,1)); c = h.BinWidth; h.BinWidth = 2;
NumBins
— Number of binsNumber of bins, specified as a positive integer. If you do not specify
NumBins
, then histogram
automatically calculates how many bins to use based on the values in
Data
.
This option does not apply to histograms of categorical data.
BinWidth
— Width of binsWidth of bins, specified as a scalar. When you specify BinWidth
,
then histogram
can use a maximum of 65,536 bins
(or 216).
If instead the specified bin width requires more bins, then histogram
uses
a larger bin width corresponding to the maximum number of bins.
For datetime and duration data, the value of 'BinWidth'
can
be a scalar duration or calendar duration.
This option does not apply to histograms of categorical data.
Example: histogram(X,'BinWidth',5)
uses bins
with a width of 5.
BinEdges
— Edges of binsEdges of bins, specified as a numeric vector. The first vector element
specifies the left edge of the first bin. The last element specifies the
right edge of the last bin. If you do not specify the bin edges, then
histogram
automatically determines the location of
the bin edges.
This option does not apply to histograms of categorical data.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
BinLimits
— Bin limitsBin limits, specified as a two-element vector, [bmin,bmax]
.
This option plots a histogram using the values in the input array, X
,
that fall between bmin
and bmax
inclusive.
That is, X(X>=bmin & X<=bmax)
.
This option does not apply to histograms of categorical data.
Example: histogram(X,'BinLimits',[1,10])
plots
a histogram using only the values in X
that are
between 1
and 10
inclusive.
BinLimitsMode
— Selection mode for bin limits'auto'
(default) | 'manual'
Selection mode for bin limits, specified as 'auto'
or 'manual'
.
The default value is 'auto'
, so that the bin limits
automatically adjust to the data.
If you explicitly specify either BinLimits
or BinEdges
,
then BinLimitsMode
is automatically set to 'manual'
.
In that case, specify BinLimitsMode
as 'auto'
to
rescale the bin limits to the data.
This option does not apply to histograms of categorical data.
BinMethod
— Binning algorithm'auto'
(default) | 'scott'
| 'fd'
| 'integers'
| 'sturges'
| 'sqrt'
| ...Binning algorithm, specified as one of the values in this table.
Value |
Description |
---|---|
|
The default |
|
Scott’s rule is optimal if the data is close
to being normally distributed. This rule is
appropriate for most other distributions, as well.
It uses a bin width of
|
|
The Freedman-Diaconis rule is less sensitive
to outliers in the data, and might be more
suitable for data with heavy-tailed distributions.
It uses a bin width of
|
|
The integer rule is useful with integer data, as it creates a bin for each integer. It uses a bin width of 1 and places bin edges halfway between integers. To avoid accidentally creating too many bins, you can use this rule to create a limit of 65536 bins (216). If the data range is greater than 65536, then the integer rule uses wider bins instead. Note
|
|
Sturges’ rule is popular due to its
simplicity. It chooses the number of bins to be
|
|
The Square Root rule is widely used in other
software packages. It chooses the number of bins
to be
|
histogram
does not always choose the number of bins using these exact
formulas. Sometimes the number of bins is adjusted slightly so that the bin edges fall on
"nice" numbers.
For datetime data, the bin method can be one of these units of time:
'second' | 'month' |
'minute' | 'quarter' |
'hour' | 'year' |
'day' | 'decade' |
'week' | 'century' |
For duration data, the bin method can be one of these units of time:
'second' | 'day' |
'minute' | 'year' |
'hour' |
If you specify BinMethod
with datetime or duration data, then
histogram
can use a maximum of 65,536 bins (or
216). If the specified bin duration requires more bins,
then histogram
uses a larger bin width corresponding to the maximum
number of bins.
This option does not apply to histograms of categorical data.
Note
If you set the BinLimits
, NumBins
, BinEdges
,
or BinWidth
property, then the BinMethod
property
is set to 'manual'
.
Example: histogram(X,'BinMethod','integers')
creates
a histogram with the bins centered on integers.
Categories
— Categories included in histogramNote
This option only applies to categorical histograms.
Categories included in histogram, specified as a cell array of character vectors, categorical array, or string array.
If you specify an input categorical array C
,
then by default, histogram
plots a bar for each
category in C
. In that case, use Categories
to
specify a unique subset of the categories instead.
If you specify bin counts, then Categories
specifies
the associated category names for the histogram.
Example: h = histogram(C,{'Large','Small'})
plots
only the categorical data in the categories 'Large'
and 'Small'
.
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3])
plots a histogram that has three categories with
the associated bin counts.
Example: h.Categories
queries
the categories that are in histogram object h
.
Data Types: cell
| categorical
| string
DisplayOrder
— Category display order'data'
(default) | 'ascend'
| 'descend'
Category display order, specified as 'ascend'
, 'descend'
,
or 'data'
. With 'ascend'
or 'descend'
,
the histogram displays with increasing or decreasing bar heights.
The default 'data'
value uses the category order
in the input data, C
.
This option only works with categorical data.
NumDisplayBins
— Number of categories to displayNumber of categories to display, specified as a scalar. You
can change the ordering of categories displayed in the histogram using
the 'DisplayOrder'
option.
This option only works with categorical data.
ShowOthers
— Toggle summary display of data belonging to undisplayed categories'off'
(default) | on/off logical valueToggle summary display of data belonging to undisplayed categories, specified as
'on'
or 'off'
, or as numeric or logical
1
(true
) or 0
(false
). A value of 'on'
is equivalent to
true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
Set this option to 'on'
to display an additional bar in the
histogram with the name 'Others'
. This extra bar counts all elements
that do not belong to categories displayed in the histogram.
You can change the number of categories displayed in the histogram,
as well as their order, using the 'NumDisplayBins'
and 'DisplayOrder'
options.
This option only works with categorical data.
Data
— Data to distribute among binsData to distribute among bins, specified as a vector, matrix,
multidimensional array, or categorical array. If Data
is
not a vector, then histogram
treats it as a single column
vector, Data(:)
, and plots a single histogram.
histogram
ignores all NaN
,
NaT
, and undefined categorical values. Similarly,
histogram
ignores Inf
and
-Inf
values unless the bin edges explicitly specify
Inf
or -Inf
as a bin edge.
Although NaN
, NaT
,
Inf
, -Inf
, and
<undefined>
values are typically not plotted, they
are still included in normalization calculations that include the total
number of data elements, such as 'probability'
.
If you change the values in the Data
property of a
histogram
object, then the bin edges are not
automatically updated. To recompute the bins, adjust a bin-related property
such as BinMethod
or NumBins
. You can
only specify categorical values for Data
if the histogram
object was originally created using categoricals.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
| categorical
| datetime
| duration
Values
— Bin valuesThis property is read-only.
Bin values, returned as a numeric vector. If
Normalization
is 'count'
(the
default), then the k
th element in
Values
specifies how many elements of
Data
fall in the kth bin interval (bin counts). The
last bin includes values that are on either bin edge,
but all other bins only include values that fall on the left edge.
Depending on the value of Normalization
, the
Values
property can instead contain a normalized
variant of the bin counts.
Normalization
— Type of normalization'count'
(default) | 'probability'
| 'countdensity'
| 'pdf'
| 'cumcount'
| 'cdf'
Type of normalization, specified as one of the values in this
table. For each bin i
:
is the bin value.
is the number of elements in the bin.
is the width of the bin.
is
the number of elements in the input data. This value can be greater
than the binned data if the data contains NaN
, NaT
,
or <undefined>
values, or if some of the
data lies outside the bin limits.
Value | Bin Values | Notes |
---|---|---|
'count' (default) |
|
|
'countdensity' |
|
Note
|
'cumcount' |
|
|
'probability' |
|
|
'pdf' |
|
Note
|
'cdf' |
|
|
Example: histogram(X,'Normalization','pdf')
plots
an estimate of the probability density function for X
.
BinCounts
— Bin countsBin counts, specified as a vector. Use this input to pass bin counts to
histogram
when the bin counts calculation is
performed separately and you do not want histogram
to
do any data binning.
The length of counts
must be equal to the number of
bins.
For numeric histograms, the number of bins is
length(edges)-1
.
For categorical histograms, the number of bins is equal to the number of categories.
Compared to the Values
property,
BinCounts
is not normalized. If
Normalization
is 'count'
, then
Values
and BinCounts
are
equivalent.
Example: histogram('BinEdges',-2:2,'BinCounts',[5 8 15
9])
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3])
BinCountsMode
— Selection mode for bin counts'auto'
(default) | 'manual'
Selection mode for bin counts, specified as 'auto'
or
'manual'
. The default value is
'auto'
, so that the bin counts are automatically
computed from Data
and
BinEdges
.
If you specify BinCounts
, then
BinCountsMode
is automatically set to
'manual'
. Similarly, if you specify
Data
, then BinCountsMode
is
automatically set to 'auto'
.
DisplayStyle
— Histogram display style'bar'
(default) | 'stairs'
Histogram display style, specified as either 'bar'
or 'stairs'
.
Specify 'stairs'
to display a stairstep plot, which
displays the outline of the histogram without filling the interior.
The default value of 'bar'
displays a histogram
bar plot.
Example: histogram(X,'DisplayStyle','stairs')
plots
the outline of the histogram.
Orientation
— Orientation of bars'vertical'
(default) | 'horizontal'
Orientation of bars, specified as 'vertical'
or 'horizontal'
.
Example: histogram(X,'Orientation','horizontal')
creates
a histogram plot with horizontal bars.
BarWidth
— Relative width of categorical bars0.9
(default) | scalar in range [0,1]
Note
This option only applies to histograms of categorical data.
Relative width of categorical bars, specified as a scalar value
in the range [0,1]
. Use this property to control
the separation of categorical bars within the histogram. The default
value is 0.9
, which means that the bar width is
90% of the space from the previous bar to the next bar, with 5% of
that space on each side.
If you set this property to 1
, then adjacent
bars touch.
Example: 0.5
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
FaceColor
— Histogram bar color'auto'
(default) | 'none'
| RGB triplet | hexadecimal color code | color nameHistogram bar color, specified as one of these values:
'none'
— Bars are not filled.
'auto'
— The histogram bar color is
chosen automatically (default).
RGB triplet, hexadecimal color code, or color name — Bars are filled with the specified color.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]
; for example, [0.4 0.6
0.7]
.
A hexadecimal color code is a character vector or a string scalar that starts
with a hash symbol (#
) followed by three or six hexadecimal
digits, which can range from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
, '#ff8800'
,
'#F80'
, and '#f80'
are
equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
If you specify DisplayStyle
as
'stairs'
, then histogram
does
not utilize the FaceColor
property.
Example: histogram(X,'FaceColor','g')
creates a
histogram plot with green bars.
EdgeColor
— Histogram edge color[0 0 0]
or black (default) | 'none'
| 'auto'
| RGB triplet | hexadecimal color code | color nameHistogram edge color, specified as one of these values:
'none'
— Edges are not drawn.
'auto'
— The color of each edge is
chosen automatically.
RGB triplet, hexadecimal color code, or color name — Edges use the specified color.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]
; for example, [0.4 0.6
0.7]
.
A hexadecimal color code is a character vector or a string scalar that starts
with a hash symbol (#
) followed by three or six hexadecimal
digits, which can range from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
, '#ff8800'
,
'#F80'
, and '#f80'
are
equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Example: histogram(X,'EdgeColor','r')
creates a
histogram plot with red bar edges.
FaceAlpha
— Transparency of histogram bars0.6
(default) | scalar value between 0
and 1
inclusiveTransparency of histogram bars, specified as a scalar value between
0
and 1
inclusive.
histogram
uses the same transparency for all the bars
of the histogram. A value of 1
means fully opaque and
0
means completely transparent (invisible).
Example: histogram(X,'FaceAlpha',1)
creates a histogram
plot with fully opaque bars.
EdgeAlpha
— Transparency of histogram bar edges1
(default) | scalar value between 0
and 1
inclusiveTransparency of histogram bar edges, specified as a scalar value between
0
and 1
inclusive. A value of
1
means fully opaque and 0
means
completely transparent (invisible).
Example: histogram(X,'EdgeAlpha',0.5)
creates a
histogram plot with semi-transparent bar edges.
LineStyle
— Line style'-'
(default) | '--'
| ':'
| '-.'
| 'none'
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
'-' | Solid line |
|
'--' | Dashed line |
|
':' | Dotted line |
|
'-.' | Dash-dotted line |
|
'none' | No line | No line |
LineWidth
— Width of bar outlines0.5
(default) | positive valueWidth of bar outlines, specified as a positive value in point units. One point equals 1/72 inch.
Example: 1.5
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
SeriesIndex
— Series indexSeries index, specified as a whole number greater than or equal to 0
. This
property is useful for reassigning the face colors of several
Histogram
objects so that they match each other. By default,
the SeriesIndex
property of a Histogram
object
is a number that corresponds to its order of creation, starting at
1
.
MATLAB uses the number to calculate indices for assigning colors when you call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder
property of the axes.
MATLAB automatically updates the face color of the Histogram
object when you change its SeriesIndex
, or when you change ColorOrder
property on the axes. However, the following conditions must be true for the changes to have any effect:
The FaceColor
property on the Histogram
object is set to 'auto'
.
The SeriesIndex
property on the
Histogram
object is greater than
0
.
The NextSeriesIndex
property on the axes object is greater than 0
.
DisplayName
— Text used by legendData
or
''
(default) | character vectorText used by the legend, specified as a character vector. The text appears next to an icon of the histogram.
Example: 'Text Description'
For multiline text, create the character vector using
sprintf
with the new line character
\n
.
Example: sprintf('line one\nline two')
Alternatively, you can specify the legend text using the legend
function.
If you specify the text as an input argument to the legend
function, then the legend uses the specified text and sets the
DisplayName
property to the same
value.
If you do not specify the text as an input argument to the
legend
function, then the legend uses the text in the
DisplayName
property. The default value
of DisplayName
is one of these values.
For numeric inputs, DisplayName
is
a character vector representing the variable name of the
input data used to construct the histogram. If the input
data does not have a variable name, then
DisplayName
is empty,
''
.
For categorical array inputs,
DisplayName
is empty,
''
.
If the DisplayName
property does not
contain any text, then the legend generates a character vector. The
character vector has the form 'dataN'
, where
N
is the number assigned to the histogram object based on its location in the list of legend
entries.
If you edit interactively the character vector in an existing legend, then
MATLAB updates the DisplayName
property to the
edited character vector.
Annotation
— Control for including or excluding object from legendAnnotation
objectThis property is read-only.
Control for including or excluding the object from a legend,
returned as an Annotation
object. Set the underlying IconDisplayStyle
property
to one of these values:
'on'
— Include the object
in the legend (default).
'off'
— Do not include the
object in the legend.
For example, to exclude a graphics object, go
, from the legend set the
IconDisplayStyle
property to
'off'
.
go.Annotation.LegendInformation.IconDisplayStyle = 'off';
Alternatively, you can control the items in a legend using the legend
function. Specify the first input argument as a vector of the
graphics objects to include. If you do not specify an existing graphics object in the
first input argument, then it does not appear in the legend. However, graphics objects
added to the axes after the legend is created do appear in the legend. Consider creating
the legend after creating all the plots to avoid extra items.
Visible
— State of visibility'on'
(default) | on/off logical valueState of visibility, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the object.
'off'
— Hide the object without deleting it. You
still can access the properties of an invisible object.
DataTipTemplate
— Data tip contentDataTipTemplate
objectData tip content, specified as a DataTipTemplate
object. You can
control the content that appears in a data tip by modifying the properties of the
underlying DataTipTemplate
object. For a list of properties, see
DataTipTemplate Properties.
For an example of modifying data tips, see Create Custom Data Tips.
Note
The DataTipTemplate
object is not returned by
findobj
or findall
, and it is not
copied by copyobj
.
ContextMenu
— Context menuGraphicsPlaceholder
array (default) | ContextMenu
objectContext menu, specified as a ContextMenu
object. Use this property
to display a context menu when you right-click the object. Create the context menu using
the uicontextmenu
function.
Note
If the PickableParts
property is set to
'none'
or if the HitTest
property is set
to 'off'
, then the context menu does not appear.
Selected
— Selection state'off'
(default) | on/off logical valueSelection state, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Selected. If you click the object when in
plot edit mode, then MATLAB sets its Selected
property to
'on'
. If the SelectionHighlight
property also is set to 'on'
, then MATLAB displays selection handles around the object.
'off'
— Not selected.
SelectionHighlight
— Display of selection handles'on'
(default) | on/off logical valueDisplay of selection handles when selected, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display selection handles when the
Selected
property is set to
'on'
.
'off'
— Never display selection handles, even
when the Selected
property is set to
'on'
.
ButtonDownFcn
— Mouse-click callback''
(default) | function handle | cell array | character vectorMouse-click callback, specified as one of these values:
Function handle
Cell array containing a function handle and additional arguments
Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)
Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:
Clicked object — Access properties of the clicked object from within the callback function.
Event data — Empty argument. Replace it with the tilde character
(~
) in the function definition to indicate that this
argument is not used.
For more information on how to use function handles to define callback functions, see Callback Definition.
Note
If the PickableParts
property is set to 'none'
or
if the HitTest
property is set to 'off'
,
then this callback does not execute.
CreateFcn
— Creation function''
(default) | function handle | cell array | character vectorObject creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callback Definition.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function''
(default) | function handle | cell array | character vectorObject deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callback Definition.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
Interruptible
— Callback interruption'on'
(default) | on/off logical valueCallback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible
property of the object
owning the running callback determines if interruption is allowed.
A value of 'on'
allows other callbacks to interrupt the
object's callbacks. The interruption occurs at the next point where
MATLAB processes the queue, such as when there is a drawnow
, figure
, uifigure
, getframe
, waitfor
, or pause
command.
If the running callback contains one of those commands, then MATLAB stops the execution of the callback at that point and executes the interrupting callback. MATLAB resumes executing the running callback when the interrupting callback completes.
If the running callback does not contain one of those commands, then MATLAB finishes executing the callback without interruption.
A value of 'off'
blocks all interruption attempts. The
BusyAction
property of the object owning the
interrupting callback determines if the interrupting callback is discarded
or put into a queue.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a DeleteFcn
, CloseRequestFcn
or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible
property value.
If the running callback is currently executing the waitfor
function, then the interruption occurs regardless of the Interruptible
property value.
Timer
objects execute according to schedule regardless of the Interruptible
property value.
When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the
object returned by the gca
or gcf
command might change when
another callback executes.
BusyAction
— Callback queuing'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The Interruptible
property of the object owning the running callback determines if interruption is permitted. If interruption is not permitted, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put in the queue. These are possible values of the BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
'cancel'
— Does not execute the interrupting callback.
PickableParts
— Ability to capture mouse clicks'visible'
(default) | 'none'
Ability to capture mouse clicks, specified as one of these values:
'visible'
— Capture mouse clicks only when
visible. The Visible
property must be set to
'on'
. The HitTest
property
determines if the Histogram
object responds to the click or if an ancestor does.
'none'
— Cannot capture mouse clicks. Clicking the Histogram
object passes the
click to the object behind it in the current view of the figure window. The
HitTest
property of the Histogram
object has no effect.
HitTest
— Response to captured mouse clicks'on'
(default) | on/off logical valueResponse to captured mouse clicks, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Trigger the
ButtonDownFcn
callback of the Histogram
object. If you have
defined the ContextMenu
property, then invoke the
context menu.
'off'
— Trigger the callbacks for the nearest
ancestor of the Histogram
object that has one of these:
HitTest
property set to
'on'
PickableParts
property set to a value that
enables the ancestor to capture mouse clicks
Note
The PickableParts
property determines if
the Histogram
object can capture
mouse clicks. If it cannot, then the HitTest
property
has no effect.
BeingDeleted
— Deletion statusThis property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent
— ParentAxes
object | PolarAxes
object | Group
object | Transform
objectParent, specified as an Axes
,
PolarAxes
, Group
, or
Transform
object.
Children
— ChildrenGraphicsPlaceholder
array | DataTip
object arrayChildren, returned as an empty GraphicsPlaceholder
array or a
DataTip
object array. Use this property to view a list of data tips
that are plotted on the chart.
You cannot add or remove children using the Children
property. To add a
child to this list, set the Parent
property of the
DataTip
object to the chart object.
HandleVisibility
— Visibility of object handle'on'
(default) | 'off'
| 'callback'
Visibility of the object handle in the Children
property
of the parent, specified as one of these values:
'on'
— Object handle is
always visible.
'off'
— Object handle is invisible at
all times. This option is useful for preventing unintended
changes by another function. Set the
HandleVisibility
to
'off'
to temporarily hide the handle
during the execution of that function.
'callback'
— Object handle is visible
from within callbacks or functions invoked by callbacks, but not
from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits
callback functions to access it.
If the object is not listed in the Children
property of the parent, then
functions that obtain object handles by searching the object hierarchy or querying
handle properties cannot return it. Examples of such functions include the
get
, findobj
, gca
, gcf
, gco
, newplot
, cla
, clf
, and close
functions.
Hidden object handles are still valid. Set the root ShowHiddenHandles
property
to 'on'
to list all object handles regardless of
their HandleVisibility
property setting.
Type
— Type of graphics object'histogram'
| 'categoricalhistogram'
This property is read-only.
Type of graphics object, returned as either 'histogram'
or 'categoricalhistogram'
. Use this property to find all
objects of a given type within a plotting hierarchy, such as searching for
the type using findobj
.
Tag
— Object identifier''
(default) | character vector | string scalarObject identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data[]
(default) | arrayUser data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.
UIContextMenu
property is not recommendedNot recommended starting in R2020a
Starting in R2020a, using the UIContextMenu
property to
assign a context menu to a graphics object or UI component is not recommended. Use
the ContextMenu
property instead. The property values are the
same.
There are no plans to remove support for the UIContextMenu
property at this time. However, the UIContextMenu
property no
longer appears in the list returned by calling the get
function
on a graphics object or UI component.