Contour chart appearance and behavior
Contour
properties control the
appearance and behavior of Contour
objects. By changing property values, you can modify certain aspects of the
contour chart. Use dot notation to query and set properties.
[C,h] = contour(...); w = h.LineWidth; h.LineWidth = 2;
LevelList
— Contour levelsContour levels, specified as a vector of z values. By
default, the contour
function
chooses values that span the range of values in the
ZData
property.
Setting this property sets the associated mode property to manual.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
LevelListMode
— Selection mode for LevelList
'auto'
(default) | 'manual'
Selection mode for the LevelList
,
specified as one of these values:
'auto'
— Determine
the values based on the ZData
values.
'manual'
— Use
manually specified values. To specify the values,
set the LevelList
property.
When the mode is manual, the
contour
function does not
change the values as you change
ZData
.
LevelStep
— Spacing between contour lines0
(default) | scalar numeric valueSpacing between contour lines, specified as a scalar
numeric value. For example, specify a value of 2 to
draw contour lines at increments of 2. The
contour
function determines
the contour interval based on the
ZData
values.
Setting this property sets the associated mode property to manual.
Example: 3.4
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
LevelStepMode
— Selection mode for LevelStep
'auto'
(default) | 'manual'
Selection mode for the LevelStep
,
specified as one of these values:
'auto'
— Determine
the value based on the ZData
values.
'manual'
— Use a
manually specified value. To specify the value,
set the LevelStep
property.
When the mode is manual, the
contour
function does not
change the value as you change
ZData
.
ZLocation
— Location of contours along z-axis'zmin'
| 'zmax'
| scalar numeric valueLocation of the contours along the z-axis, specified as one of the following values:
'zmin'
— Positions the
contours at the minimum z-level
in the plot box. This is the default location for
surfc
and meshc
plots.
'zmax'
— Positions the
contours at the maximum z-level
in the plot box.
Scalar numeric value — Positions the
contours at the specified
z-level. Plots created with the
contour
and contourf
use a value of
0
by default.
Note
Setting this property on a 3-D contour plot
created with the contour3
function has no effect.
Fill
— Fill between contour lines'off'
(default) | on/off logical valueFill between contour lines, specified as
'on'
or
'off'
, or as numeric or logical
1
(true
) or
0
(false
). A
value of 'on'
is equivalent to
true
, and
'off'
is equivalent to
false
. Thus, you can use the
value of this property as a logical value. The value
is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'off'
— Do not
fill the spaces between contour lines with a
color. This is the default value when you create
the contour chart using the
contour
or
contour3
functions.
'on'
— Fill the
spaces between contour lines with color. This is
the default value when you create the contour
chart using the contourf
function.
LineColor
— Color of contour lines'flat'
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Color of contour lines, specified as
'flat'
, an RGB triplet, a
hexadecimal color code, a color name, or a short
name. To use a different color for each contour
line, specify 'flat'
. The colors
are determined by the contour value of the line, the
colormap, and the scaling of data values into the
colormap. For more information on color scaling, see
caxis
.
To use the same color for all contour lines, specify an RGB triplet, a hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
LineStyle
— Line style'-'
(default) | '--'
| ':'
| '-.'
| 'none'
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
'-' | Solid line |
|
'--' | Dashed line |
|
':' | Dotted line |
|
'-.' | Dash-dotted line |
|
'none' | No line | No line |
LineWidth
— Line Width0.5
(default) | positive valueContour line width, specified as a positive value in points. One point equals 1/72 inch.
ShowText
— Contour line labels'off'
(default) | on/off logical valueContour line labels, specified as 'on'
or 'off'
,
or as numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the height values along the contour
lines.
'off'
— Do not label the contour lines.
LabelSpacing
— Label spacing144
(default) | scalarLabel spacing along the contour lines, specified as a scalar value in points, where one point is 1/72 inch. Use this property to control the number of contour labels along the contour lines. Smaller values produce more labels.
You must set the ShowText
property to 'on'
for
the LabelSpacing
property to have an effect.
If you use the clabel
function to display the labels,
then the LabelSpacing
property has no effect and the plot displays
one label per line.
TextStep
— Interval between labeled contour linesInterval between labeled contour lines, specified as a
scalar numeric value. By default, the contour plot
includes a label for every contour line when the
ShowText
property is set to
'on'
.
Setting this property sets the associated mode property to manual.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
TextStepMode
— Selection mode for TextStep
'auto'
(default) | 'manual'
Selection mode for the TextStep
,
specified as one of these values:
'auto'
— Determine
value based on the ZData
values. If the ShowText
property is set to 'on'
, then
the contour
function labels
every contour line.
'manual'
— Use a
manually specified value. To specify the value,
set the TextStep
property.
TextList
— Contour lines to labelContour lines to label, specified as a vector of real values.
Setting this property sets the associated mode property to manual.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
TextListMode
— Selection mode for TextList
'auto'
(default) | 'manual'
Selection mode for the TextList
,
specified as one of these values:
'auto'
— Use
values equal to the values of the
LevelList
property. The
contour plot includes a text label for each
line.
'manual'
— Use
manually specified values. Specify the values by
setting the TextList
property.
ContourMatrix
— Contour matrix[]
(default) | matrixThis property is read-only.
Contour matrix, returned as two-row matrix. This matrix contains the contour levels (heights) and the coordinates of the vertices at each level. The data is arranged sequentially in n sets of columns for n contour lines:
The first column in each set contains the contour level and the number of vertices at that level. The top number is the contour level, and the bottom number is the number of vertices.
Subsequent columns in the set are the (x, y) coordinates of the vertices. Each column represents an ordered pair. The top number is the x-coordinate, and the bottom number is the y-coordinate.
For example, here are the first few columns of the
contour matrix M =
contour(peaks(3))
:
XData
— x values[]
(default) | vector or matrixx values, specified as a vector or matrix.
If XData
is a vector,
then length(XData)
must equal
size(ZData,2)
and
YData
must also be a vector.
The XData
values must be
strictly increasing or strictly decreasing and
cannot contain any duplicates.
If XData
is a matrix,
then size(XData)
and
size(YData)
must equal
size(ZData)
. Typically, you
should set the XData
values so
that the columns are strictly increasing or
strictly decreasing and the rows are uniform (or
the rows are strictly increasing or strictly
decreasing and the columns are uniform).
Setting this property sets the associated mode property to manual.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
XDataMode
— Selection mode for XData
'auto'
(default) | 'manual'
Selection mode for the XData
,
specified as one of these values:
'auto'
— Set the
XData
using the column indices
of ZData
.
'manual'
— Use
manually specified values. To specify the values,
set the XData
property
directly, or specify the input argument
X
to the
contour
,
contourf
, or
contour3
function.
XDataSource
— Variable linked to XData
''
(default) | character vector | stringVariable linked to XData
, specified as a character vector or string
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the base workspace to generate the
XData
.
By default, there is no linked variable so the value is an empty
character vector, ''
. If you link a variable, then MATLAB does
not update the XData
values immediately. To force
an update of the data values, use the refreshdata
function.
Note
If you change one data source property to a variable that contains data of a different dimension, you might cause the function to generate a warning and not render the graph until you have changed all data source properties to appropriate values.
Example: 'x'
YData
— y values[]
(default) | vector or matrixy values, specified as a vector or matrix.
If YData
is a vector,
then length(YData)
must equal
size(ZData,1)
and
XData
must also be a vector.
The XData
values must be
strictly increasing or strictly decreasing and
cannot contain any duplicates.
If YData
is a matrix,
then size(XData)
and
size(YData)
must equal
size(ZData)
. Typically, you
should set the YData
values so
that the columns are strictly increasing or
strictly decreasing and the rows are uniform (or
the rows are strictly increasing or strictly
decreasing and the columns are uniform).
Setting this property sets the associated mode property to manual.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
YDataMode
— Selection mode for XData
'auto'
(default) | 'manual'
Selection mode for the YData
,
specified as one of these values:
'auto'
— Set the
YData
using the row indices of
ZData
.
'manual'
— Use
manually specified values. To specify the values,
set the YData
property
directly, or specify the input argument
Y
to the
contour
,
contourf
, or
contour3
function.
YDataSource
— Variable linked to YData
''
(default) | character vector | stringVariable linked to YData
, specified as a character vector or string
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the base workspace to generate the
YData
.
By default, there is no linked variable so the value is an empty
character vector, ''
. If you link a variable, then MATLAB does
not update the YData
values immediately. To force
an update of the data values, use the refreshdata
function.
Note
If you change one data source property to a variable that contains data of a different dimension, you might cause the function to generate a warning and not render the graph until you have changed all data source properties to appropriate values.
Example: 'y'
ZData
— Data that defines surface to contour[]
(default) | matrixData that defines the surface to contour, specified as
a matrix. ZData
must be at least
a 2-by-2 matrix.
Setting this property sets the associated mode property to manual.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ZDataSource
— Variable linked to ZData
''
(default) | character vector | stringVariable linked to ZData
, specified as a character vector or string
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the base workspace to generate the
ZData
.
By default, there is no linked variable so the value is an empty
character vector, ''
. If you link a variable, then MATLAB does
not update the ZData
values immediately. To force
an update of the data values, use the refreshdata
function.
Note
If you change one data source property to a variable that contains data of a different dimension, you might cause the function to generate a warning and not render the graph until you have changed all data source properties to appropriate values.
Example: 'z'
DisplayName
— Legend label''
(default) | character vector | string scalarLegend label, specified as a character vector or string scalar. The legend does not
display until you call the legend
command. If you do not specify
the text, then legend
sets the label using the form
'dataN'
.
Annotation
— Control for including or excluding object from legendAnnotation
objectThis property is read-only.
Control for including or excluding the object from a legend,
returned as an Annotation
object. Set the underlying IconDisplayStyle
property
to one of these values:
'on'
— Include the object
in the legend (default).
'off'
— Do not include the
object in the legend.
For example, to exclude a graphics object, go
, from the legend set the
IconDisplayStyle
property to
'off'
.
go.Annotation.LegendInformation.IconDisplayStyle = 'off';
Alternatively, you can control the items in a legend using the legend
function. Specify the first input argument as a vector of the
graphics objects to include. If you do not specify an existing graphics object in the
first input argument, then it does not appear in the legend. However, graphics objects
added to the axes after the legend is created do appear in the legend. Consider creating
the legend after creating all the plots to avoid extra items.
Visible
— State of visibility'on'
(default) | on/off logical valueState of visibility, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the object.
'off'
— Hide the object without deleting it. You
still can access the properties of an invisible object.
DataTipTemplate
— Data tip contentDataTipTemplate
objectData tip content, specified as a DataTipTemplate
object. You can
control the content that appears in a data tip by modifying the properties of the
underlying DataTipTemplate
object. For a list of properties, see
DataTipTemplate Properties.
For an example of modifying data tips, see Create Custom Data Tips.
Note
The DataTipTemplate
object is not returned by
findobj
or findall
, and it is not
copied by copyobj
.
ContextMenu
— Context menuGraphicsPlaceholder
array (default) | ContextMenu
objectContext menu, specified as a ContextMenu
object. Use this property
to display a context menu when you right-click the object. Create the context menu using
the uicontextmenu
function.
Note
If the PickableParts
property is set to
'none'
or if the HitTest
property is set
to 'off'
, then the context menu does not appear.
Selected
— Selection state'off'
(default) | on/off logical valueSelection state, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Selected. If you click the object when in
plot edit mode, then MATLAB sets its Selected
property to
'on'
. If the SelectionHighlight
property also is set to 'on'
, then MATLAB displays selection handles around the object.
'off'
— Not selected.
SelectionHighlight
— Display of selection handles'on'
(default) | on/off logical valueDisplay of selection handles when selected, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display selection handles when the
Selected
property is set to
'on'
.
'off'
— Never display selection handles, even
when the Selected
property is set to
'on'
.
Clipping
— Clipping of object to axes limits'on'
(default) | on/off logical valueClipping of the object to the axes limits, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
A value of 'on'
clips parts of the object that are
outside the axes limits.
A value of 'off'
displays the entire object, even if
parts of it appear outside the axes limits. Parts of the object might appear
outside the axes limits if you create a plot, set hold
on
, freeze the axis scaling, and then create the object so that it
is larger than the original plot.
The Clipping
property of the axes that contains the object must be set to
'on'
. Otherwise, this property has no effect. For more
information about the clipping behavior, see the Clipping
property of the
axes.
ButtonDownFcn
— Mouse-click callback''
(default) | function handle | cell array | character vectorMouse-click callback, specified as one of these values:
Function handle
Cell array containing a function handle and additional arguments
Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)
Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:
Clicked object — Access properties of the clicked object from within the callback function.
Event data — Empty argument. Replace it with the tilde character
(~
) in the function definition to indicate that this
argument is not used.
For more information on how to use function handles to define callback functions, see Callback Definition.
Note
If the PickableParts
property is set to 'none'
or
if the HitTest
property is set to 'off'
,
then this callback does not execute.
CreateFcn
— Creation function''
(default) | function handle | cell array | character vectorObject creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callback Definition.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function''
(default) | function handle | cell array | character vectorObject deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callback Definition.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
Interruptible
— Callback interruption'on'
(default) | on/off logical valueCallback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible
property of the object
owning the running callback determines if interruption is allowed.
A value of 'on'
allows other callbacks to interrupt the
object's callbacks. The interruption occurs at the next point where
MATLAB processes the queue, such as when there is a drawnow
, figure
, uifigure
, getframe
, waitfor
, or pause
command.
If the running callback contains one of those commands, then MATLAB stops the execution of the callback at that point and executes the interrupting callback. MATLAB resumes executing the running callback when the interrupting callback completes.
If the running callback does not contain one of those commands, then MATLAB finishes executing the callback without interruption.
A value of 'off'
blocks all interruption attempts. The
BusyAction
property of the object owning the
interrupting callback determines if the interrupting callback is discarded
or put into a queue.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a DeleteFcn
, CloseRequestFcn
or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible
property value.
If the running callback is currently executing the waitfor
function, then the interruption occurs regardless of the Interruptible
property value.
Timer
objects execute according to schedule regardless of the Interruptible
property value.
When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the
object returned by the gca
or gcf
command might change when
another callback executes.
BusyAction
— Callback queuing'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The Interruptible
property of the object owning the running callback determines if interruption is permitted. If interruption is not permitted, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put in the queue. These are possible values of the BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
'cancel'
— Does not execute the interrupting callback.
PickableParts
— Ability to capture mouse clicks'visible'
(default) | 'none'
Ability to capture mouse clicks, specified as one of these values:
'visible'
— Capture mouse clicks only when
visible. The Visible
property must be set to
'on'
. The HitTest
property
determines if the Contour
object responds to the click or if an ancestor does.
'none'
— Cannot capture mouse clicks. Clicking the Contour
object passes the
click to the object behind it in the current view of the figure window. The
HitTest
property of the Contour
object has no effect.
HitTest
— Response to captured mouse clicks'on'
(default) | on/off logical valueResponse to captured mouse clicks, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Trigger the
ButtonDownFcn
callback of the Contour
object. If you have
defined the ContextMenu
property, then invoke the
context menu.
'off'
— Trigger the callbacks for the nearest
ancestor of the Contour
object that has one of these:
HitTest
property set to
'on'
PickableParts
property set to a value that
enables the ancestor to capture mouse clicks
Note
The PickableParts
property determines if
the Contour
object can capture
mouse clicks. If it cannot, then the HitTest
property
has no effect.
BeingDeleted
— Deletion statusThis property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent
— ParentAxes
object | Group
object | Transform
objectParent, specified as an Axes
, Group
,
or Transform
object.
Children
— ChildrenGraphicsPlaceholder
array | DataTip
object arrayChildren, returned as an empty GraphicsPlaceholder
array or a
DataTip
object array. Use this property to view a list of data tips
that are plotted on the chart.
You cannot add or remove children using the Children
property. To add a
child to this list, set the Parent
property of the
DataTip
object to the chart object.
HandleVisibility
— Visibility of object handle'on'
(default) | 'off'
| 'callback'
Visibility of the object handle in the Children
property
of the parent, specified as one of these values:
'on'
— Object handle is
always visible.
'off'
— Object handle is invisible at
all times. This option is useful for preventing unintended
changes by another function. Set the
HandleVisibility
to
'off'
to temporarily hide the handle
during the execution of that function.
'callback'
— Object handle is visible
from within callbacks or functions invoked by callbacks, but not
from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits
callback functions to access it.
If the object is not listed in the Children
property of the parent, then
functions that obtain object handles by searching the object hierarchy or querying
handle properties cannot return it. Examples of such functions include the
get
, findobj
, gca
, gcf
, gco
, newplot
, cla
, clf
, and close
functions.
Hidden object handles are still valid. Set the root ShowHiddenHandles
property
to 'on'
to list all object handles regardless of
their HandleVisibility
property setting.
Type
— Type of graphics object'contour'
This property is read-only.
Type of graphics object, returned as
'contour'
.
Tag
— Object identifier''
(default) | character vector | string scalarObject identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data[]
(default) | arrayUser data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.
UIContextMenu
property is not recommendedNot recommended starting in R2020a
Starting in R2020a, setting or getting UIContextMenu
property is not
recommended. Instead, use the ContextMenu
property, which accepts the same type of input and behaves the
same way as the UIContextMenu
property.
There are no plans to remove the UIContextMenu
property at this time, but
it is no longer listed when you call the set
, get
,
or properties
functions on the Contour
object.