Bar chart appearance and behavior
Bar
properties control the appearance and
behavior of a Bar
object. By changing property values,
you can modify certain aspects of the bar chart. Use dot notation to query and set
properties.
b = bar(1:10); c = b.FaceColor b.FaceColor = [0 0.5 0.5];
FaceColor
— Fill color'flat'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Fill color, specified as 'flat'
, an RGB triplet, a hexadecimal
color code, a color name, or a short name. The 'flat'
option uses the
CData
property value of the Bar
object to
color the faces.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Starting in R2017b, the default value is an RGB triplet from the
ColorOrder
property of the axes. In previous releases, the
default value was 'flat'
and the colors were based on the
colormap.
Example: b = bar(1:10,'FaceColor','red')
Example: b.FaceColor = [0 0.5 0.5];
Example: b.FaceColor = 'flat';
Example: b.FaceColor = '#D2F9A7';
FaceColorMode
— Control how FaceColor
is set'auto'
(default) | 'manual'
Control how the FaceColor
property is set, specified as one of these values:
'auto'
— MATLAB controls the value of the FaceColor
property by selecting a color from the ColorOrder
property of the axes.
'manual'
— You control the value of the
FaceColor
property manually, either by specifying a
color when you call a charting function that creates the object, or by
setting the FaceColor
property on the object after
creating it.
If you change the value of the FaceColor
property manually, MATLAB changes the value of the FaceColorMode
property to 'manual'
.
EdgeColor
— Outline color'flat'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Outline color, specified as 'flat'
, an RGB triplet, a hexadecimal
color code, a color name, or a short name. If there are 150 bars or fewer, the default
value is [0 0 0]
, which corresponds to black. If there are more than
150 adjacent bars, the default value is 'none'
.
Starting in R2017b, the 'flat'
option uses the
CData
values to color the edges. In previous releases, the
'flat'
option colored the edges using colors from the
colormap.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Example: b = bar(1:10,'EdgeColor','red')
Example: b.EdgeColor = [0 0.5 0.5];
Example: b.EdgeColor = 'flat';
Example: b.EdgeColor = '#D2F9A7';
FaceAlpha
— Face transparency1
(default) | scalar in range [0,1]
Face transparency, specified as a scalar in the range
[0,1]
. A value of 1 is opaque and 0 is completely
transparent. Values between 0 and 1 are semitransparent.
Example: b = bar(1:10,'FaceAlpha',0.5)
Example: b.FaceAlpha = 0.5;
EdgeAlpha
— Edge transparency1
(default) | scalar in range [0,1]
Edge transparency, specified as a scalar in the range
[0,1]
. A value of 1 is opaque and 0 is completely
transparent. Values between 0 and 1 are semitransparent.
Example: b = bar(1:10,'EdgeAlpha',0.5)
Example: b.EdgeAlpha = 0.5;
LineStyle
— Line style'-'
(default) | '--'
| ':'
| '-.'
| 'none'
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
'-' | Solid line |
|
'--' | Dashed line |
|
':' | Dotted line |
|
'-.' | Dash-dotted line |
|
'none' | No line | No line |
LineWidth
— Width of bar outlines0.5
(default) | positive valueWidth of bar outlines, specified as a positive value in point units. One point equals 1/72 inch.
Example: 1.5
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
SeriesIndex
— Series indexSeries index, specified as a whole number greater than or equal to
0
. This property is useful for reassigning the face colors of
several Bar
objects so that they match each other. By
default, the SeriesIndex
property of a
Bar
object is a number that corresponds to its order of
creation, starting at 1
.
MATLAB uses the number to calculate an index for assigning the face color when
you call plotting functions. The index refers to the rows of the array stored in the
ColorOrder
property of the axes.
MATLAB automatically updates the face color of the Bar
object when you change its SeriesIndex
, or when you change
ColorOrder
property on the axes. However, the following
conditions must be true for the changes to have any effect:
The FaceColorMode
property of the
Bar
object is set to
'auto'
.
The SeriesIndex
property on the
Bar
object is greater than
0
.
The NextSeriesIndex
property on the axes object is
greater than 0
.
BarLayout
— Arrangement of bars'grouped'
(default) | 'stacked'
Arrangement of bars, specified as one of these values:
'grouped'
— Group bars by
rows in Y
, where Y
is the input
argument to the bar
or barh
function that created the bar chart.
'stacked'
— Display one
bar for each row in Y
. The bar height is the sum
of the elements in the row. Each bar is multicolored. Colors correspond
to distinct elements and show the relative contribution each row element
makes to the total sum.
BarWidth
— Relative width of individual bars0.8
(default) | scalar in range [0,1]
Relative width of individual bars, specified as a scalar value
in the range [0,1]
. Use this property to control
the separation of bars within a group. The default value is 0.8
,
which means that MATLAB separates the bars slightly. If you set
this property to 1
, then adjacent bars touch.
Example: 0.5
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Horizontal
— Horizontal bar chart'off'
(default) | on/off logical valueHorizontal bar chart, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is
equivalent to true
, and 'off'
is
equivalent to false
. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState
.
BaseValue
— Baseline value0
(default) | numeric scalar valueBaseline value, specified as a numeric scalar value.
The baseline value that you specify applies to either the x-axis
or the y-axis depending on the bar chart orientation.
If you change the orientation of the bar chart from vertical to horizontal,
or vice versa, the baseline value might change. Set the BaseValue
property
after setting the Horizontal
property.
ShowBaseLine
— Baseline visibility'on'
(default) | on/off logical valueBaseline visibility, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Show the baseline.
'off'
— Hide the baseline.
BaseLine
— BaselineThis property is read-only.
Baseline object. For a list of baseline properties, see Baseline Properties.
CData
— Color dataColor data, specified as one of these values:
RGB triplet — Single RGB color value applies to all bars.
Three-column matrix — One color per bar. Each row in the matrix specifies an RGB triplet for a particular bar.
Scalar — Single color applies to all bars, where the color comes from the colormap.
Vector — One color per bar. The colors come from the colormap.
By default, when you create a bar chart, the CData
property
contains a three-column matrix of RGB triplets. You can change the color for a
particular bar by changing the corresponding row in the matrix.
This property applies only when the FaceColor
or
EdgeColor
property is set to 'flat'
.
Change the color for a particular bar by setting the FaceColor
property to 'flat'
. Then change the corresponding row in the
CData
matrix to the new RGB triplet. For example, change the
color of the second bar.
b = bar(1:10,'FaceColor','flat'); b.CData(2,:) = [0 0.8 0.8];
XData
— Bar locationsBar locations, specified as a vector with no repeating values.
For vertical bar charts, the values are the bar locations along the x-axis.
For horizontal bar charts, the values are the bar locations along the y-axis.
Alternatively, specify the bar locations using the input argument
X
to the bar
or
barh
function. If you do not specify
X
, then the indices of the values in
YData
determine the bar locations.
XData
and YData
must have equal
lengths.
Example: 1:10
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
XDataMode
— Selection mode for XData
'auto'
(default) | 'manual'
Selection mode for XData
, specified as one
of these values:
'auto'
— Use the indices
of the values in YData
(or ZData
for
3-D plots).
'manual'
— Use manually
specified values. To specify the values, set the XData
property
or specify the input argument X
to the plotting
function.
XDataSource
— Variable linked to XData
''
(default) | character vector | stringVariable linked to XData
, specified as a character vector or string
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the base workspace to generate the
XData
.
By default, there is no linked variable so the value is an empty
character vector, ''
. If you link a variable, then MATLAB does
not update the XData
values immediately. To force
an update of the data values, use the refreshdata
function.
Note
If you change one data source property to a variable that contains data of a different dimension, you might cause the function to generate a warning and not render the graph until you have changed all data source properties to appropriate values.
Example: 'x'
YData
— Bar lengthsBar lengths, specified as a vector. Alternatively, specify the bar lengths
using the input argument Y
to the bar
or barh
function.
XData
and YData
must have equal
lengths.
Example: 1:10
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| duration
YDataSource
— Variable linked to YData
''
(default) | character vector | stringVariable linked to YData
, specified as a character vector or string
containing a MATLAB workspace variable name. MATLAB evaluates the variable in the base workspace to generate the
YData
.
By default, there is no linked variable so the value is an empty
character vector, ''
. If you link a variable, then MATLAB does
not update the YData
values immediately. To force
an update of the data values, use the refreshdata
function.
Note
If you change one data source property to a variable that contains data of a different dimension, you might cause the function to generate a warning and not render the graph until you have changed all data source properties to appropriate values.
Example: 'y'
XEndPoints
— x-coordinates of bar tipsThis property is read-only.
x-coordinates of the tips of the bars, returned as a
vector. These coordinates are useful when you want to add text, error bars,
or other objects to the tips of the bars. For example, you can pass the
value of this property to the text
function when you
want to add text to the tips of the bars.
YEndPoints
— y-coordinates of bar tipsThis property is read-only.
y-coordinates of the tips of the bars, returned as a
vector. These coordinates are useful when you want to add text, error bars,
or other objects to the tips of the bars. For example, you can pass the
value of this property to the text
function when you
want to add text to the tips of the bars.
DisplayName
— Legend label''
(default) | character vector | string scalarLegend label, specified as a character vector or string scalar. The legend does not
display until you call the legend
command. If you do not specify
the text, then legend
sets the label using the form
'dataN'
.
Annotation
— Control for including or excluding object from legendAnnotation
objectThis property is read-only.
Control for including or excluding the object from a legend,
returned as an Annotation
object. Set the underlying IconDisplayStyle
property
to one of these values:
'on'
— Include the object
in the legend (default).
'off'
— Do not include the
object in the legend.
For example, to exclude a graphics object, go
, from the legend set the
IconDisplayStyle
property to
'off'
.
go.Annotation.LegendInformation.IconDisplayStyle = 'off';
Alternatively, you can control the items in a legend using the legend
function. Specify the first input argument as a vector of the
graphics objects to include. If you do not specify an existing graphics object in the
first input argument, then it does not appear in the legend. However, graphics objects
added to the axes after the legend is created do appear in the legend. Consider creating
the legend after creating all the plots to avoid extra items.
Visible
— State of visibility'on'
(default) | on/off logical valueState of visibility, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the object.
'off'
— Hide the object without deleting it. You
still can access the properties of an invisible object.
DataTipTemplate
— Data tip contentDataTipTemplate
objectData tip content, specified as a DataTipTemplate
object. You can
control the content that appears in a data tip by modifying the properties of the
underlying DataTipTemplate
object. For a list of properties, see
DataTipTemplate Properties.
For an example of modifying data tips, see Create Custom Data Tips.
Note
The DataTipTemplate
object is not returned by
findobj
or findall
, and it is not
copied by copyobj
.
ContextMenu
— Context menuGraphicsPlaceholder
array (default) | ContextMenu
objectContext menu, specified as a ContextMenu
object. Use this property
to display a context menu when you right-click the object. Create the context menu using
the uicontextmenu
function.
Note
If the PickableParts
property is set to
'none'
or if the HitTest
property is set
to 'off'
, then the context menu does not appear.
Selected
— Selection state'off'
(default) | on/off logical valueSelection state, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Selected. If you click the object when in
plot edit mode, then MATLAB sets its Selected
property to
'on'
. If the SelectionHighlight
property also is set to 'on'
, then MATLAB displays selection handles around the object.
'off'
— Not selected.
SelectionHighlight
— Display of selection handles'on'
(default) | on/off logical valueDisplay of selection handles when selected, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display selection handles when the
Selected
property is set to
'on'
.
'off'
— Never display selection handles, even
when the Selected
property is set to
'on'
.
Clipping
— Clipping of object to axes limits'on'
(default) | on/off logical valueClipping of the object to the axes limits, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
A value of 'on'
clips parts of the object that are
outside the axes limits.
A value of 'off'
displays the entire object, even if
parts of it appear outside the axes limits. Parts of the object might appear
outside the axes limits if you create a plot, set hold
on
, freeze the axis scaling, and then create the object so that it
is larger than the original plot.
The Clipping
property of the axes that contains the object must be set to
'on'
. Otherwise, this property has no effect. For more
information about the clipping behavior, see the Clipping
property of the
axes.
ButtonDownFcn
— Mouse-click callback''
(default) | function handle | cell array | character vectorMouse-click callback, specified as one of these values:
Function handle
Cell array containing a function handle and additional arguments
Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)
Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:
Clicked object — Access properties of the clicked object from within the callback function.
Event data — Empty argument. Replace it with the tilde character
(~
) in the function definition to indicate that this
argument is not used.
For more information on how to use function handles to define callback functions, see Callback Definition.
Note
If the PickableParts
property is set to 'none'
or
if the HitTest
property is set to 'off'
,
then this callback does not execute.
CreateFcn
— Creation function''
(default) | function handle | cell array | character vectorObject creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callback Definition.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function''
(default) | function handle | cell array | character vectorObject deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callback Definition.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
Interruptible
— Callback interruption'on'
(default) | on/off logical valueCallback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible
property of the object
owning the running callback determines if interruption is allowed.
A value of 'on'
allows other callbacks to interrupt the
object's callbacks. The interruption occurs at the next point where
MATLAB processes the queue, such as when there is a drawnow
, figure
, uifigure
, getframe
, waitfor
, or pause
command.
If the running callback contains one of those commands, then MATLAB stops the execution of the callback at that point and executes the interrupting callback. MATLAB resumes executing the running callback when the interrupting callback completes.
If the running callback does not contain one of those commands, then MATLAB finishes executing the callback without interruption.
A value of 'off'
blocks all interruption attempts. The
BusyAction
property of the object owning the
interrupting callback determines if the interrupting callback is discarded
or put into a queue.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a DeleteFcn
, CloseRequestFcn
or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible
property value.
If the running callback is currently executing the waitfor
function, then the interruption occurs regardless of the Interruptible
property value.
Timer
objects execute according to schedule regardless of the Interruptible
property value.
When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the
object returned by the gca
or gcf
command might change when
another callback executes.
BusyAction
— Callback queuing'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The Interruptible
property of the object owning the running callback determines if interruption is permitted. If interruption is not permitted, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put in the queue. These are possible values of the BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
'cancel'
— Does not execute the interrupting callback.
PickableParts
— Ability to capture mouse clicks'visible'
(default) | 'none'
Ability to capture mouse clicks, specified as one of these values:
'visible'
— Capture mouse clicks when visible.
The Visible
property must be set to
'on'
and you must click a part of the Bar
object that has a
defined color. You cannot click a part that has an associated color property
set to 'none'
. The HitTest
property
determines if the Bar
object responds to the click or if an ancestor does.
'none'
— Cannot capture
mouse clicks. Clicking the Bar
object
passes the click to the object below it in the current view of the
figure window. The HitTest
property of the Bar
object has no effect.
HitTest
— Response to captured mouse clicks'on'
(default) | on/off logical valueResponse to captured mouse clicks, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Trigger the
ButtonDownFcn
callback of the Bar
object. If you have
defined the ContextMenu
property, then invoke the
context menu.
'off'
— Trigger the callbacks for the nearest
ancestor of the Bar
object that has one of these:
HitTest
property set to
'on'
PickableParts
property set to a value that
enables the ancestor to capture mouse clicks
Note
The PickableParts
property determines if
the Bar
object can capture
mouse clicks. If it cannot, then the HitTest
property
has no effect.
BeingDeleted
— Deletion statusThis property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent
— ParentAxes
object | Group
object | Transform
objectParent, specified as an Axes
, Group
,
or Transform
object.
Children
— ChildrenGraphicsPlaceholder
array | DataTip
object arrayChildren, returned as an empty GraphicsPlaceholder
array or a
DataTip
object array. Use this property to view a list of data tips
that are plotted on the chart.
You cannot add or remove children using the Children
property. To add a
child to this list, set the Parent
property of the
DataTip
object to the chart object.
HandleVisibility
— Visibility of object handle'on'
(default) | 'off'
| 'callback'
Visibility of the object handle in the Children
property
of the parent, specified as one of these values:
'on'
— Object handle is
always visible.
'off'
— Object handle is invisible at
all times. This option is useful for preventing unintended
changes by another function. Set the
HandleVisibility
to
'off'
to temporarily hide the handle
during the execution of that function.
'callback'
— Object handle is visible
from within callbacks or functions invoked by callbacks, but not
from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits
callback functions to access it.
If the object is not listed in the Children
property of the parent, then
functions that obtain object handles by searching the object hierarchy or querying
handle properties cannot return it. Examples of such functions include the
get
, findobj
, gca
, gcf
, gco
, newplot
, cla
, clf
, and close
functions.
Hidden object handles are still valid. Set the root ShowHiddenHandles
property
to 'on'
to list all object handles regardless of
their HandleVisibility
property setting.
Type
— Type of graphics object'bar'
(default)This property is read-only.
Type of graphics object, returned as 'bar'
. Use this
property to find all objects of a given type within a plotting hierarchy,
such as searching for the type using findobj
.
Tag
— Object identifier''
(default) | character vector | string scalarObject identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data[]
(default) | arrayUser data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.
UIContextMenu
property is not recommendedNot recommended starting in R2020a
Starting in R2020a, setting or getting UIContextMenu
property is not
recommended. Instead, use the ContextMenu
property, which accepts the same type of input and behaves the
same way as the UIContextMenu
property.
There are no plans to remove the UIContextMenu
property at this time, but
it is no longer listed when you call the set
, get
,
or properties
functions on the Bar
object.