geocrs | Geographic coordinate reference system |
wgs84Ellipsoid | Reference ellipsoid for World Geodetic System 1984 |
egm96geoid | Geoid height from Earth Gravitational Model 1996 (EGM96) |
earthRadius | Mean radius of planet Earth |
rcurve | Ellipsoidal radii of curvature |
rsphere | Radii of auxiliary spheres |
geocentricLatitude | Convert geodetic to geocentric latitude |
parametricLatitude | Convert geodetic to parametric latitude |
geodeticLatitudeFromGeocentric | Convert geocentric to geodetic latitude |
geodeticLatitudeFromParametric | Convert parametric to geodetic latitude |
axes2ecc | Eccentricity of ellipse from axes lengths |
majaxis | Semimajor axis of ellipse |
minaxis | Semiminor axis of ellipse |
ecc2flat | Flattening of ellipse from eccentricity |
flat2ecc | Eccentricity of ellipse from flattening |
ecc2n | Third flattening of ellipse from eccentricity |
n2ecc | Eccentricity of ellipse from third flattening |
The Earth can be modeled with increasing precision as a perfect sphere, an oblate spheroid, an ellipsoid, or a geoid.
A reference spheroid is a model of a roughly-spherical astronomical body with a simplified geometry, such as a sphere with uniform radius or a standard ellipsoid.
Use reference spheroids to create map projections, to calculate curves and areas on the surface of a spheroid, and to transform 3-D geodetic coordinates.