Reconstruct missing input and output data
Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,MaxIterations,Tol)
Datae = misdata(Data)
reconstructs missing
input and output data. Data
is time-domain input-output
data in the iddata
object format. Missing data
samples (both in inputs and in outputs) are entered as NaN
s. Datae
is
an iddata
object where the missing data has been
replaced by reasonable estimates.
Datae = misdata(Data,Model)
specifies a
model used for the reconstruction of missing data. Model
is
any linear identified model (idtf
, idproc
, idgrey
, idpoly
, idss
).
If no suitable model is known, it is estimated in an iterative fashion
using default order state-space models.
Datae = misdata(Data,MaxIterations,Tol)
specifies maximum number of
iterations and tolerance. MaxIterations
is the maximum number of
iterations carried out (the default is 10). The iterations are terminated when the
difference between two consecutive data estimates differs by less than
Tol
%. The default value of Tol
is
1
.
For a given model, the missing data is estimated as parameters so as to minimize the output prediction errors obtained from the reconstructed data. See Section 14.2 in Ljung (1999). Treating missing outputs as parameters is not the best approach from a statistical point of view, but is a good approximation in many cases.
When no model is given, the algorithm alternates between estimating missing data and estimating models, based on the current reconstruction.