System Identification | Identify models of dynamic systems from measured data |
Estimate Process Model | Estimate continuous-time process model for single-input, single-output (SISO) system in either time or frequency domain in the Live Editor |
procest | Estimate process model using time or frequency data |
idproc | Continuous-time process model with identifiable parameters |
pem | Prediction error estimate for linear and nonlinear model |
idpar | Create parameter for initial states and input level estimation |
delayest | Estimate time delay (dead time) from data |
init | Set or randomize initial parameter values |
getpvec | Model parameters and associated uncertainty data |
setpvec | Modify value of model parameters |
getpar | Obtain attributes such as values and bounds of linear model parameters |
setpar | Set attributes such as values and bounds of linear model parameters |
procestOptions | Options set for procest |
Estimate Process Models Using the App
Import data into the app, and specify model parameters and estimation options.
Estimate Process Models at the Command Line
How to estimate process models at the command line.
Identify Low-Order Transfer Functions (Process Models) Using System Identification App
Identifying continuous-time transfer functions from single-input/single-output (SISO) data using the System Identification app.
Building and Estimating Process Models Using System Identification Toolbox™
This example shows how to build simple process models using System Identification Toolbox™.
Definition of a process model.
Process Model Structure Specification
Configure the model structure by specifying the number of real or complex poles, and whether to include a zero, delay, and integrator.
Data Supported by Process Models
Use regularly sampled time-domain and frequency-domain data, and continuous-time frequency-domain data.
Estimating Multiple-Input, Multi-Output Process Models
Specify whether to estimate the same transfer function for all input-output pairs, or a different transfer function for each pair.
Disturbance Model Structure for Process Models
Specify a noise model.
Specifying Initial Conditions for Iterative Estimation Algorithms
Specify how the algorithm treats initial conditions for estimation of model parameters.