This example shows how to benchmark solving a linear system by generating GPU code. Use matrix left division, also known as mldivide
or the backslash operator (\), to solve the system of linear equations A*x = b
for x
(that is, compute x = A\b
).
CUDA® enabled NVIDIA® GPU with compute capability 3.5 or higher.
NVIDIA CUDA toolkit and driver.
Environment variables for the compilers and libraries. For information on the supported versions of the compilers and libraries, see Third-Party Hardware. For setting up the environment variables, see Setting Up the Prerequisite Products.
To verify that the compilers and libraries necessary for running this example are set up correctly, use the coder.checkGpuInstall
function.
envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);
Choose the appropriate matrix size for the computations by specifying the amount of system memory in GB available to the CPU and the GPU. The default value is based only on the amount of memory available on the GPU. You can specify a value that is appropriate for your system.
g = gpuDevice; maxMemory = 0.25*g.AvailableMemory/1024^3;
This example benchmarks matrix left division (\) including the cost of transferring data between the CPU and GPU, to get a clear view of the total application time when using GPU Coder™. The application time profiling must not include the time to create sample input data. The genData.m
function separates generation of test data from the entry-point function that solves the linear system.
type getData.m
function [A, b] = getData(n, clz) % Copyright 2017-2019 The MathWorks, Inc. fprintf('Creating a matrix of size %d-by-%d.\n', n, n); A = rand(n, n, clz) + 100*eye(n, n, clz); b = rand(n, 1, clz); end
The backslash.m
entry-point function encapsulates the (\) operation for which you want to generate code.
type backslash.m
function [x] = backslash(A,b) %#codegen % Copyright 2017-2019 The MathWorks, Inc. coder.gpu.kernelfun(); x = A\b; end
Create a function to generate the GPU MEX function based on the particular input data size.
type genGpuCode.m
function [] = genGpuCode(A, b) % Copyright 2017-2019 The MathWorks, Inc. cfg = coder.gpuConfig('mex'); evalc('codegen -config cfg -args {A,b} backslash'); end
The performance of the parallel algorithms that solve a linear system depends greatly on the matrix size. This example compares the performance of the algorithm for different matrix sizes.
% Declare the matrix sizes to be a multiple of 1024. sizeLimit = inf; if ispc sizeLimit = double(intmax('int32')); end maxSizeSingle = min(floor(sqrt(maxMemory*1024^3/4)),floor(sqrt(sizeLimit/4))); maxSizeDouble = min(floor(sqrt(maxMemory*1024^3/8)),floor(sqrt(sizeLimit/8))); step = 1024; if maxSizeDouble/step >= 10 step = step*floor(maxSizeDouble/(5*step)); end sizeSingle = 1024:step:maxSizeSingle; sizeDouble = 1024:step:maxSizeDouble; numReps = 5;
Use the total elapsed time as a measure of performance because that enables you to compare the performance of the algorithm for different matrix sizes. Given a matrix size, the benchmarking function creates the matrix A
and the right-side b
once, and then solves A\b
a few times to get an accurate measure of the time it takes.
type benchFcnMat.m
function time = benchFcnMat(A, b, reps) % Copyright 2017-2019 The MathWorks, Inc. time = inf; % Solve the linear system a few times and take the best run for itr = 1:reps tic; matX = backslash(A, b); tcurr = toc; time = min(tcurr, time); end end
Create a different function for GPU code execution that invokes the generated GPU MEX function.
type benchFcnGpu.m
function time = benchFcnGpu(A, b, reps) % Copyright 2017-2019 The MathWorks, Inc. time = inf; gpuX = backslash_mex(A, b); for itr = 1:reps tic; gpuX = backslash_mex(A, b); tcurr = toc; time = min(tcurr, time); end end
When you execute the benchmarks, the computations can take a long time to complete. Print some intermediate status information as you complete the benchmarking for each matrix size. Encapsulate the loop over all the matrix sizes in a function to benchmark single- and double-precision computations.
Actual execution times can vary across different hardware configurations. This benchmarking was done by using MATLAB R2020a on a machine with a 6 core, 3.5GHz Intel® Xeon® CPU and an NVIDIA TITAN Xp GPU.
type executeBenchmarks.m
function [timeCPU, timeGPU] = executeBenchmarks(clz, sizes, reps) % Copyright 2017-2019 The MathWorks, Inc. fprintf(['Starting benchmarks with %d different %s-precision ' ... 'matrices of sizes\nranging from %d-by-%d to %d-by-%d.\n'], ... length(sizes), clz, sizes(1), sizes(1), sizes(end), ... sizes(end)); timeGPU = zeros(size(sizes)); timeCPU = zeros(size(sizes)); for i = 1:length(sizes) n = sizes(i); fprintf('Size : %d\n', n); [A, b] = getData(n, clz); genGpuCode(A, b); timeCPU(i) = benchFcnMat(A, b, reps); fprintf('Time on CPU: %f sec\n', timeCPU(i)); timeGPU(i) = benchFcnGpu(A, b, reps); fprintf('Time on GPU: %f sec\n', timeGPU(i)); fprintf('\n'); end end
Execute the benchmarks in single and double precision.
[cpu, gpu] = executeBenchmarks('single', sizeSingle, numReps); results.sizeSingle = sizeSingle; results.timeSingleCPU = cpu; results.timeSingleGPU = gpu; [cpu, gpu] = executeBenchmarks('double', sizeDouble, numReps); results.sizeDouble = sizeDouble; results.timeDoubleCPU = cpu; results.timeDoubleGPU = gpu;
Starting benchmarks with 9 different single-precision matrices of sizes ranging from 1024-by-1024 to 25600-by-25600. Size : 1024 Creating a matrix of size 1024-by-1024. Time on CPU: 0.010894 sec Time on GPU: 0.012735 sec Size : 4096 Creating a matrix of size 4096-by-4096. Time on CPU: 0.256912 sec Time on GPU: 0.056594 sec Size : 7168 Creating a matrix of size 7168-by-7168. Time on CPU: 0.859825 sec Time on GPU: 0.138257 sec Size : 10240 Creating a matrix of size 10240-by-10240. Time on CPU: 2.190538 sec Time on GPU: 0.276720 sec Size : 13312 Creating a matrix of size 13312-by-13312. Time on CPU: 4.265689 sec Time on GPU: 0.481420 sec Size : 16384 Creating a matrix of size 16384-by-16384. Time on CPU: 8.167554 sec Time on GPU: 0.771961 sec Size : 19456 Creating a matrix of size 19456-by-19456. Time on CPU: 12.814798 sec Time on GPU: 1.150009 sec Size : 22528 Creating a matrix of size 22528-by-22528. Time on CPU: 19.060859 sec Time on GPU: 1.671082 sec Size : 25600 Creating a matrix of size 25600-by-25600. Time on CPU: 27.237500 sec Time on GPU: 2.318981 sec Starting benchmarks with 6 different double-precision matrices of sizes ranging from 1024-by-1024 to 16384-by-16384. Size : 1024 Creating a matrix of size 1024-by-1024. Time on CPU: 0.025851 sec Time on GPU: 0.021405 sec Size : 4096 Creating a matrix of size 4096-by-4096. Time on CPU: 0.435886 sec Time on GPU: 0.175009 sec Size : 7168 Creating a matrix of size 7168-by-7168. Time on CPU: 1.734958 sec Time on GPU: 0.765464 sec Size : 10240 Creating a matrix of size 10240-by-10240. Time on CPU: 4.240617 sec Time on GPU: 2.081403 sec Size : 13312 Creating a matrix of size 13312-by-13312. Time on CPU: 8.611123 sec Time on GPU: 4.415243 sec Size : 16384 Creating a matrix of size 16384-by-16384. Time on CPU: 19.387437 sec Time on GPU: 8.050974 sec
Plot the results and compare the performance on the CPU and the GPU for single and double precision.
First, look at the performance of the backslash operator in single precision.
fig = figure; ax = axes('parent', fig); plot(ax, results.sizeSingle, results.timeSingleGPU, '-x', ... results.sizeSingle, results.timeSingleCPU, '-o') grid on; legend('GPU', 'CPU', 'Location', 'NorthWest'); title(ax, 'Single-Precision Performance') ylabel(ax, 'Time (s)'); xlabel(ax, 'Matrix Size'); drawnow;
Now, look at the performance of the backslash operator in double precision.
fig = figure; ax = axes('parent', fig); plot(ax, results.sizeDouble, results.timeDoubleGPU, '-x', ... results.sizeDouble, results.timeDoubleCPU, '-o') legend('GPU', 'CPU', 'Location', 'NorthWest'); grid on; title(ax, 'Double-Precision Performance') ylabel(ax, 'Time (s)'); xlabel(ax, 'Matrix Size'); drawnow;
Finally, look at the speedup of the backslash operator when comparing the GPU to the CPU.
speedupDouble = results.timeDoubleCPU./results.timeDoubleGPU; speedupSingle = results.timeSingleCPU./results.timeSingleGPU; fig = figure; ax = axes('parent', fig); plot(ax, results.sizeSingle, speedupSingle, '-v', ... results.sizeDouble, speedupDouble, '-*') grid on; legend('Single-precision', 'Double-precision', 'Location', 'SouthEast'); title(ax, 'Speedup of Computations on GPU Compared to CPU'); ylabel(ax, 'Speedup'); xlabel(ax, 'Matrix Size'); drawnow;