Some of the most common reasons why GPU Coder™ generated code is not performing as expected are:
CUDA® kernels are not created.
Host to device and device to host memory transfers
(cudaMemcpy
) are throttling
performance.
Not enough parallelism or device issues.
These topics elaborate on the common causes for these symptoms and describe how to utilize the built-in screener to detect these issues. You can find information on how to work around for these issues and generate more efficient CUDA code.
GPU Coder troubleshooting workflow.
Create and view reports generated during code generation.
Trace Between Generated CUDA Code and MATLAB Source Code
Highlight sections of MATLAB code that runs on the GPU.
Generating a GPU Code Metrics Report for Code Generated from MATLAB Code
Create and explore GPU static code metrics report.
Recommendations for generating efficient CUDA kernels.
Reduce memory bottleneck issues when using GPU Coder.
Analyze Execution Profiles of the Generated Code
Fine-grain profiling for the MATLAB algorithm and its generated CUDA code through SIL.
Improve performance by using the information obtained from NVIDIA Profiler (nvvp).
See current limitations of GPU Coder.