This example shows how to develop a code replacement library to optimize the performance
of non-scalar small matrix operations with processor-specific intrinsic functions by providing
information on how to define code replacement for a addition
operator. To
develop a code replacement library use either the interactive or programmatic approach. For
more information, see Develop a Code Replacement Library.
Open the Code Replacement Tool (crtool), from the MATLAB command line with the following command:
>>crtool
Create a table.
From the crtool context menu, select File > New Table.
In the right pane, name the table
crl_table_small_matrix
. Click
Apply.
Create an entry. From the crtool context menu, select File > New entry > Math Operation.
Create entry parameters. In the Function drop-down list,
select Addition
. Algorithm information appears in the crtool. For
this example, select the parameter to Cast before
operation
.
Create the conceptual representation. The conceptual representation describes the
signature of the function that you want to replace. In the Conceptual
function subsection of the crtool, specify the return argument,
y1
, with the Data Type of
double
and the Argument Type of
Matrix
, the input argument, u1
with the
Data Type of double
and the
Argument Type of Matrix
and the input
argument, u2
with the Data Type of
double
and the Argument Type of
Matrix
.
Create the implementation representation. The implementation representation
describes the signature of the optimization function. For this example, to specify
that the implementation arguments have the same order and properties as the
conceptual arguments, select the Make conceptual and implementation
argument types the same check box. Specify the return argument
y1, u1
and u2
, with the Data
Type of double
and select the
Pointer dialog box.
Specify a Name for the replacement function under Function prototype.
Specify build information. Click the Build Information tab to open the build requirements pane. Specify the files (source, header, object) that the code generator requires for code replacement. For this example, you do not need to specify build information.
Validate and save the table. In the Mapping Information tab, click Validate entry. In the crtool context menu, select File > Save table > Save.
Register a code replacement library. Registration creates a library composed of the tables that you specify. Select File > Generate registration file. In the Generate registration file dialog box, fill out these fields:
To use your code replacement library, refresh your current MATLAB session with the command:
>>sl_refresh_customizations
Verify the code replacement library. From the MATLAB command line, open the library by using the Code Replacement Viewer and verify that the table and entry are correctly specified. For more information, see Verify Code Replacement Library. Configure your model to use the code replacement library, generate code, and verify that replacement occurs as expected. If unexpected behavior occurs, examine the hit and miss logs to troubleshoot the issues.
Open the programmatic interface from the MATLAB menu by selecting New > Function.
Create a table.
Create a function with the name of your code replacement library table that does not have arguments and returns a table object. You can use this function to call your code replacement library table.
Create a table object by calling RTW.TflTable
.
function hTable = crl_table_small_matrix_operator() % Create a function to call the code replacement library table %% Create a table object hTable = RTW.TflTable; LibPath= fullfile(matlabroot,'examples','coder');
Create an entry. Because this example replaces a function, create a code
replacement entry in your table by calling the entry function RTW.TflCOperationEntry
.
function hTable = crl_table_small_matrix_operator() % Create a function to call the code replacement library table %% Create a table object hTable = RTW.TflTable; LibPath= fullfile(matlabroot,'examples','coder'); %% Create an entry hEntry = RTW.TflCOperationEntry;
Create entry parameters. Because this examples replaces a function, create entry
parameters by calling the function setTflCOperationEntryParameters
.
function hTable = crl_table_small_matrix_operator() % Create a function to call the code replacement library table %% Create a table object hTable = RTW.TflTable; LibPath= fullfile(matlabroot,'examples','coder'); %% Create an entry hEntry = RTW.TflCOperationEntry; %% Create entry parameters hEntry.setTflCOperationEntryParameters(... 'Key', 'RTW_OP_ADD', ... 'Priority', 30, ... 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ... 'ImplementationName', 'matrix_sum_2x2_double', ... 'ImplementationHeaderFile', 'MatrixMath.h', ... 'ImplementationSourceFile', 'MatrixMath.c', ... 'ImplementationHeaderPath', LibPath, ... 'ImplementationSourcePath', LibPath, ... 'AdditionalIncludePaths', {LibPath}, ... 'GenCallback', 'RTW.copyFileToBuildDir', ... 'SideEffects', true);
Create the conceptual representation. The conceptual representation describes the
signature of the function that you want to replace. To explicitly specify argument
properties, call the function createAndAddConceptualArg
.
function hTable = crl_table_small_matrix_operator() % Create a function to call the code replacement library table %% Create a table object hTable = RTW.TflTable; LibPath= fullfile(matlabroot,'examples','coder'); %% Create an entry hEntry = RTW.TflCOperationEntry; %% Create entry parameters hEntry.setTflCOperationEntryParameters(... 'Key', 'RTW_OP_ADD', ... 'Priority', 30, ... 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ... 'ImplementationName', 'matrix_sum_2x2_double', ... 'ImplementationHeaderFile', 'MatrixMath.h', ... 'ImplementationSourceFile', 'MatrixMath.c', ... 'ImplementationHeaderPath', LibPath, ... 'ImplementationSourcePath', LibPath, ... 'AdditionalIncludePaths', {LibPath}, ... 'GenCallback', 'RTW.copyFileToBuildDir', ... 'SideEffects', true); %% Create the conceptual representation createAndAddConceptualArg(hEntry, 'RTW.TflArgMatrix', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'BaseType', 'double', ... 'DimRange', [2 2]); createAndAddConceptualArg(hEntry, 'RTW.TflArgMatrix',... 'Name', 'u1', ... 'BaseType', 'double', ... 'DimRange', [2 2]); createAndAddConceptualArg(hEntry, 'RTW.TflArgMatrix',... 'Name', 'u2', ... 'BaseType', 'double', ... 'DimRange', [2 2]);
Create the implementation representation. The implementation representation
describes the signature of the optimization function. To specify that the
implementation arguments have the same order and properties as the conceptual
arguments, call the function getTflArgFromString
.
function hTable = crl_table_small_matrix_operator() % Create a function to call the code replacement library table %% Create a table object hTable = RTW.TflTable; LibPath= fullfile(matlabroot,'examples','coder'); %% Create an entry hEntry = RTW.TflCOperationEntry; %% Create entry parameters hEntry.setTflCOperationEntryParameters(... 'Key', 'RTW_OP_ADD', ... 'Priority', 30, ... 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ... 'ImplementationName', 'matrix_sum_2x2_double', ... 'ImplementationHeaderFile', 'MatrixMath.h', ... 'ImplementationSourceFile', 'MatrixMath.c', ... 'ImplementationHeaderPath', LibPath, ... 'ImplementationSourcePath', LibPath, ... 'AdditionalIncludePaths', {LibPath}, ... 'GenCallback', 'RTW.copyFileToBuildDir', ... 'SideEffects', true); %% Create the conceptual representation createAndAddConceptualArg(hEntry, 'RTW.TflArgMatrix', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'BaseType', 'double', ... 'DimRange', [2 2]); createAndAddConceptualArg(hEntry, 'RTW.TflArgMatrix',... 'Name', 'u1', ... 'BaseType', 'double', ... 'DimRange', [2 2]); createAndAddConceptualArg(hEntry, 'RTW.TflArgMatrix',... 'Name', 'u2', ... 'BaseType', 'double', ... 'DimRange', [2 2]); %% Create the Implementation Representation arg = getTflArgFromString(hTable, 'y2', 'void'); arg.IOType = 'RTW_IO_OUTPUT'; hEntry.Implementation.setReturn(arg); arg = getTflArgFromString(hTable, 'u1', ['double' '*']); hEntry.Implementation.addArgument(arg); arg = getTflArgFromString(hTable, 'u2', ['double' '*']); hEntry.Implementation.addArgument(arg); arg = getTflArgFromString(hTable, 'y1', ['double' '*']); arg.IOType = 'RTW_IO_OUTPUT'; hEntry.Implementation.addArgument(arg); %% Add the entry to the table hTable.addEntry(hEntry);
Specify build information. In the entry parameters, specify files (header, source, object) that the code generator needs for code replacement. For this example, build information is not required.
Validate and save the customization file. From the MATLAB menu, save this customization file by selecting File > Save. From the command line, validate the code replacement library table by calling it:
>> hTable = crl_table_small_matrix
Register the code replacement library. Registration creates a code replacement library by defining the library name, code replacement tables, and other information. Create a registration file (a new function file) with these specifications:
function rtwTargetInfo(cm) cm.registerTargetInfo(@loc_register_crl); end function this = loc_register_crl this(1) = RTW.TflRegistry; this(1).Name = 'CRL for small matrix operator to processor’; this(1).TableList = {'crl_table_small_matrix.m'}; % table created in this example this(1).TargetHWDeviceType = {'*'}; this(1).Description = 'Example code replacement library'; end
To use your code replacement library, refresh your current MATLAB session with the command:
>>sl_refresh_customizations
Verify the code replacement library. From the MATLAB command line, open the library by using the Code Replacement Viewer and verify that the table and entry are correctly specified. For more information, see Verify Code Replacement Library. Configure your model to use the code replacement library, generate code, and verify that replacement occurs as expected. If unexpected behavior occurs, examine the hit and miss logs to troubleshoot the issues.