During the build process, the code generator uses:
Preset match criteria to identify functions and operators for which application-specific implementations replace default implementations.
Preset replacement function signatures.
It is possible that preset match criteria and preset replacement function signatures do not completely meet your function and operator replacement needs. For example:
You want to replace an operator with a particular fixed-point implementation function only when fraction lengths are within a particular range.
When a match occurs, you want to modify your replacement function signature based on compile-time information, such as passing fraction-length values into the function.
To add extra logic into the code replacement match and replacement process, create custom code replacement table entries. With custom entries, you can specify additional match criteria and modify the replacement function signature to meet application needs.
To create a custom code replacement entry:
Create a custom code replacement entry class, derived
from RTW.TflCFunctionEntryML (for function
replacement) or RTW.TflCOperationEntryML
(for operator replacement).
In your derived class, implement a do_match
method
with a fixed preset signature as a MATLAB® function. In your do_match
method,
provide either or both of the following customizations that instantiate
the class:
Add match criteria that the base class does not provide. The base class provides a match based on:
Argument number
Argument name
Signedness
Word size
Slope (if not specified with wildcards)
Bias (if not specified with wildcards)
Math modes, such as saturation and rounding
Operator or function key
Modify the implementation signature by adding additional arguments or setting constant input argument values. You can inject a constant value, such as an input scaling value, as an additional argument to the replacement function.
Create code replacement entries that instantiate the custom entry class.
Register a library containing the code replacement table that includes your entries.
During code generation, the code replacement match process tries
to match function or operator call sites with the base class of your
derived entry class. If the process finds a match, the software calls
your do_match
method to execute your additional
match logic (if any) and your replacement
function customizations (if any).
This example shows how to create custom code replacement entries that add logic to the code match and replacement process for a scalar operation. Custom entries specify additional match criteria or modify the replacement function signature to meet application needs.
For example:
When fraction lengths are within a specific range, replace an operator with a fixed-point implementation function.
When a match occurs, modify the replacement function signature based on compile-time information, such as passing fraction-length values into the function.
This example modifies a fixed-point addition replacement such that the implementation function passes in the fraction lengths of the input and output data types as arguments.
To create custom code replacement entries that add logic to the code replacement match and replacement process:
Create a class, for example TflCustomOperationEntry
,
that is derived from the base class RTW.TflCOperationEntryML
.
The derived class defines a do_match
method with
the following signature:
function ent = do_match(hThis, ... hCSO, ... targetBitPerChar, ... targetBitPerShort, ... targetBitPerInt, ... targetBitPerLong, ... targetBitPerLongLong)
In the do_match
signature:
ent
is the return handle, which
is returned as empty (indicating that the match failed) or as a TflCOperationEntry
handle.
hThis
is the handle to the class
instance.
hCSO
is a handle to an object that
the code generator creates for querying the library for a replacement.
Remaining arguments are the number of bits for various data types of the current target.
The do_match
method adds match criteria
that the base class does not provide. The method makes modifications
to the implementation signature. In this case, the do_match
method
relies on the base class for checking word size and signedness. do_match
must
match only the number of conceptual arguments to the value 3 (two
inputs and one output) and the bias for each argument to value 0.
If the code generator finds a match, do_match
:
Sets the return handle.
Removes slope and bias wild cards from the conceptual arguments (the match is for specific slope and bias values).
Writes fraction-length values for the inputs and output into replacement function arguments 3, 4, and 5.
You can create and add three additional implementation function arguments for passing fraction lengths in the class definition or in each code replacement entry definition that instantiates this class. This example creates the arguments, adds them to a code replacement table definition file, and sets them to specific values in the class definition code.
classdef TflCustomOperationEntry < RTW.TflCOperationEntryML methods function ent = do_match(hThis, ... hCSO, ... %#ok targetBitPerChar, ... %#ok targetBitPerShort, ... %#ok targetBitPerInt, ... %#ok targetBitPerLong, ... %#ok targetBitPerLongLong) %#ok % DO_MATCH - Create a custom match function. The base class % checks the types of the arguments prior to calling this % method. This class will check additional data and can % modify the implementation function. % The base class checks word size and signedness. Slopes and biases % have been wildcarded, so the only additional checking to do is % to check that the biases are zero and that there are only three % conceptual arguments (one output, two inputs) ent = []; % default the return to empty, indicating the match failed if length(hCSO.ConceptualArgs) == 3 && ... hCSO.ConceptualArgs(1).Type.Bias == 0 && ... hCSO.ConceptualArgs(2).Type.Bias == 0 && ... hCSO.ConceptualArgs(3).Type.Bias == 0 % Modify the default implementation. Since this is a % generator entry, a concrete entry is created using this entry % as a template. The type of entry being created is a standard % TflCOperationEntry. Using the standard operation entry % provides required information, and you do not need % a custom match function. ent = RTW.TflCOperationEntry(hThis); % Since this entry is modifying the implementation for specific % fraction-length values (arguments 3, 4, and 5), the conceptual argument % wild cards must be removed (the wildcards were inherited from the % generator when it was used as a template for the concrete entry). % This concrete entry is now for a specific slope and bias. % hCSO holds the slope and bias values (created by the code generator). for idx=1:3 ent.ConceptualArgs(idx).CheckSlope = true; ent.ConceptualArgs(idx).CheckBias = true; % Set the specific Slope and Biases ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope; ent.ConceptualArgs(idx).Type.Bias = 0; end % Set the fraction-length values in the implementation function. ent.Implementation.Arguments(3).Value = ... -1.0*hCSO.ConceptualArgs(2).Type.FixedExponent; ent.Implementation.Arguments(4).Value = ... -1.0*hCSO.ConceptualArgs(3).Type.FixedExponent; ent.Implementation.Arguments(5).Value = ... -1.0*hCSO.ConceptualArgs(1).Type.FixedExponent; end end end end
Exit the class folder and return to the previous working folder.
Create and save the following code replacement table definition file,
crl_table_custom_add_ufix32.m
. This file defines a code
replacement table that contains a single operator entry, an entry generator for
unsigned 32-bit fixed-point addition operations, with arbitrary fraction-length
values on the inputs and the output. The table entry:
Instantiates the derived class TflCustomOperationEntry
from the previous step. If you want to replace word sizes and signedness
attributes, you can use the same derived class, but not the same entry,
because you cannot use a wild card with the WordLength
and IsSigned
arguments. For example, to support
uint8
, int8
,
uint16
, int16
, and
int32
, add five other distinct entries. To use
different implementation functions for saturation and rounding modes other
than overflow and round to floor, add entries for those match
permutations.
Sets operator entry parameters with the call to the setTflCOperationEntryParameters
function.
Calls the createAndAddConceptualArg
function to create conceptual arguments y1
,
u1
, and u2
.
Calls createAndSetCImplementationReturn
and createAndAddImplementationArg
to define the signature for
the replacement function. Three of the calls to
createAndAddImplementationArg
create implementation
arguments to hold the fraction-length values for the inputs and output.
Alternatively, the entry can omit those argument definitions. Instead, the
do_match
method of the derived class
TflCustomOperationEntry
can create and add the
three implementation arguments. When the number of additional implementation
arguments required can vary based on compile-time information, use the
alternative approach.
Calls addEntry
to add the entry
to a code replacement table.
function hTable = crl_table_custom_add_ufix32 hTable = RTW.TflTable; % Add TflCustomOperationEntry op_entry = TflCustomOperationEntry; setTflCOperationEntryParameters(op_entry, ... 'Key', 'RTW_OP_ADD', ... 'Priority', 30, ... 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ... 'RoundingModes', {'RTW_ROUND_FLOOR'}, ... 'ImplementationName', 'myFixptAdd', ... 'ImplementationHeaderFile', 'myFixptAdd.h', ... 'ImplementationSourceFile', 'myFixptAdd.c'); createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'CheckSlope', false, ... 'CheckBias', false, ... 'DataType', 'Fixed', ... 'Scaling', 'BinaryPoint', ... 'IsSigned', false, ... 'WordLength', 32); createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u1', ... 'IOType', 'RTW_IO_INPUT', ... 'CheckSlope', false, ... 'CheckBias', false, ... 'DataType', 'Fixed', ... 'Scaling', 'BinaryPoint', ... 'IsSigned', false, ... 'WordLength', 32); createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u2', ... 'IOType', 'RTW_IO_INPUT', ... 'CheckSlope', false, ... 'CheckBias', false, ... 'DataType', 'Fixed', ... 'Scaling', 'BinaryPoint', ... 'IsSigned', false, ... 'WordLength', 32); % Specify replacement function signature createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u1', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u2', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0); % Add 3 fraction-length args. Actual values are set during code generation. createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ... 'Name', 'fl_in1', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ... 'Name', 'fl_in2', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ... 'Name', 'fl_out', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 0); addEntry(hTable, op_entry);
Check the validity of the operator entry.
At the command prompt, invoke the table definition file.
tbl = crl_table_custom_add_ufix32
In the Code Replacement Viewer, view the table definition file.
crviewer(crl_table_custom_add_ufix32)