This example shows how to train a deep learning network with multiple outputs that predict both labels and angles of rotations of handwritten digits.
To train a network with multiple outputs, you must train the network using a custom training loop.
The digitTrain4DArrayData
function loads the images, their digit labels, and their angles of rotation from the vertical. Create an arrayDatastore
object for the images, labels, and the angles, and then use the combine
function to make a single datastore that contains all of the training data. Extract the class names and number of nondiscrete responses.
[XTrain,YTrain,anglesTrain] = digitTrain4DArrayData;
dsXTrain = arrayDatastore(XTrain,'IterationDimension',4);
dsYTrain = arrayDatastore(YTrain);
dsAnglesTrain = arrayDatastore(anglesTrain);
dsTrain = combine(dsXTrain,dsYTrain,dsAnglesTrain);
classNames = categories(YTrain);
numClasses = numel(classNames);
numObservations = numel(YTrain);
View some images from the training data.
idx = randperm(numObservations,64); I = imtile(XTrain(:,:,:,idx)); figure imshow(I)
Define the following network that predicts both labels and angles of rotation.
A convolution-batchnorm-ReLU block with 16 5-by-5 filters.
Two convolution-batchnorm-ReLU blocks each with 32 3-by-3 filters.
A skip connection around the previous two blocks containing a convolution-batchnorm-ReLU block with 32 1-by-1 convolutions.
Merge the skip connection using addition.
For classification output, a branch with a fully connected operation of size 10 (the number of classes) and a softmax operation.
For the regression output, a branch with a fully connected operation of size 1 (the number of responses).
Define the main block of layers as a layer graph.
layers = [ imageInputLayer([28 28 1],'Normalization','none','Name','in') convolution2dLayer(5,16,'Padding','same','Name','conv1') batchNormalizationLayer('Name','bn1') reluLayer('Name','relu1') convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv2') batchNormalizationLayer('Name','bn2') reluLayer('Name','relu2') convolution2dLayer(3,32,'Padding','same','Name','conv3') batchNormalizationLayer('Name','bn3') reluLayer('Name','relu4') additionLayer(2,'Name','addition') fullyConnectedLayer(numClasses,'Name','fc1') softmaxLayer('Name','softmax')]; lgraph = layerGraph(layers);
Add the skip connection.
layers = [ convolution2dLayer(1,32,'Stride',2,'Name','convSkip') batchNormalizationLayer('Name','bnSkip') reluLayer('Name','reluSkip')]; lgraph = addLayers(lgraph,layers); lgraph = connectLayers(lgraph,'relu1','convSkip'); lgraph = connectLayers(lgraph,'reluSkip','addition/in2');
Add the fully connected layer for regression.
layers = fullyConnectedLayer(1,'Name','fc2'); lgraph = addLayers(lgraph,layers); lgraph = connectLayers(lgraph,'addition','fc2');
View the layer graph in a plot.
figure plot(lgraph)
Create a dlnetwork
object from the layer graph.
dlnet = dlnetwork(lgraph)
dlnet = dlnetwork with properties: Layers: [17×1 nnet.cnn.layer.Layer] Connections: [17×2 table] Learnables: [20×3 table] State: [8×3 table] InputNames: {'in'} OutputNames: {'softmax' 'fc2'}
Create the function modelGradients
, listed at the end of the example, that takes as input, the dlnetwork
object dlnet
, a mini-batch of input data dlX
with corresponding targets T1
and T2
containing the labels and angles, respectively, and returns the gradients of the loss with respect to the learnable parameters, the updated network state, and the corresponding loss.
Specify the training options. Train for 30 epochs using a mini-batch size of 128.
numEpochs = 30; miniBatchSize = 128;
Visualize the training progress in a plot.
plots = "training-progress";
Use minibatchqueue
to process and manage the mini-batches of images. For each mini-batch:
Use the custom mini-batch preprocessing function preprocessMiniBatch
(defined at the end of this example) to one-hot encode the class labels.
Format the image data with the dimension labels 'SSCB'
(spatial, spatial, channel, batch). By default, the minibatchqueue
object converts the data to dlarray
objects with underlying type single
. Do not add a format to the class labels or angles.
Train on a GPU if one is available. By default, the minibatchqueue
onbject converts each output to a gpuArray
if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.
mbq = minibatchqueue(dsTrain,... 'MiniBatchSize',miniBatchSize,... 'MiniBatchFcn', @preprocessData,... 'MiniBatchFormat',{'SSCB','',''});
Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. At the end of each iteration, display the training progress. For each mini-batch:
Evaluate the model gradients and loss using dlfeval
and the modelGradients
function.
Update the network parameters using the adamupdate
function.
Initialize the training progress plot.
if plots == "training-progress" figure lineLossTrain = animatedline('Color',[0.85 0.325 0.098]); ylim([0 inf]) xlabel("Iteration") ylabel("Loss") grid on end
Initialize parameters for Adam.
trailingAvg = []; trailingAvgSq = [];
Train the model.
iteration = 0; start = tic; % Loop over epochs. for epoch = 1:numEpochs % Shuffle data. shuffle(mbq) % Loop over mini-batches while hasdata(mbq) iteration = iteration + 1; [dlX,dlY1,dlY2] = next(mbq); % Evaluate the model gradients, state, and loss using dlfeval and the % modelGradients function. [gradients,state,loss] = dlfeval(@modelGradients, dlnet, dlX, dlY1, dlY2); dlnet.State = state; % Update the network parameters using the Adam optimizer. [dlnet,trailingAvg,trailingAvgSq] = adamupdate(dlnet,gradients, ... trailingAvg,trailingAvgSq,iteration); % Display the training progress. if plots == "training-progress" D = duration(0,0,toc(start),'Format','hh:mm:ss'); addpoints(lineLossTrain,iteration,double(gather(extractdata(loss)))) title("Epoch: " + epoch + ", Elapsed: " + string(D)) drawnow end end end
Test the classification accuracy of the model by comparing the predictions on a test set with the true labels and angles. Manage the test data set using a minibatchqueue
object with the same setting as the training data.
[XTest,Y1Test,anglesTest] = digitTest4DArrayData; dsXTest = arrayDatastore(XTest,'IterationDimension',4); dsYTest = arrayDatastore(Y1Test); dsAnglesTest = arrayDatastore(anglesTest); dsTest = combine(dsXTest,dsYTest,dsAnglesTest); mbqTest = minibatchqueue(dsTest,... 'MiniBatchSize',miniBatchSize,... 'MiniBatchFcn', @preprocessData,... 'MiniBatchFormat',{'SSCB','',''});
To predict the labels and angles of the validation data, loop over the mini-batches and use the the predict
function. Store the predicted classes and angles. Compare the predicted and true classes and angles and store the results.
classesPredictions = []; anglesPredictions = []; classCorr = []; angleDiff = []; % Loop over mini-batches. while hasdata(mbqTest) % Read mini-batch of data. [dlXTest,dlY1Test,dlY2Test] = next(mbqTest); % Make predictions using the predict function. [dlY1Pred,dlY2Pred] = predict(dlnet,dlXTest,'Outputs',["softmax" "fc2"]); % Determine predicted classes. Y1PredBatch = onehotdecode(dlY1Pred,classNames,1); classesPredictions = [classesPredictions Y1PredBatch]; % Dermine predicted angles Y2PredBatch = extractdata(dlY2Pred); anglesPredictions = [anglesPredictions Y2PredBatch]; % Compare predicted and true classes Y1Test = onehotdecode(dlY1Test,classNames,1); classCorr = [classCorr Y1PredBatch == Y1Test]; % Compare predicted and true angles angleDiffBatch = Y2PredBatch - dlY2Test; angleDiff = [angleDiff extractdata(gather(angleDiffBatch))]; end
Evaluate the classification accuracy.
accuracy = mean(classCorr)
accuracy = 0.9814
Evaluate the regression accuracy.
angleRMSE = sqrt(mean(angleDiff.^2))
angleRMSE = single
7.7431
View some of the images with their predictions. Display the predicted angles in red and the correct labels in green.
idx = randperm(size(XTest,4),9); figure for i = 1:9 subplot(3,3,i) I = XTest(:,:,:,idx(i)); imshow(I) hold on sz = size(I,1); offset = sz/2; thetaPred = anglesPredictions(idx(i)); plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],'r--') thetaValidation = anglesTest(idx(i)); plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],'g--') hold off label = string(classesPredictions(idx(i))); title("Label: " + label) end
The modelGradients
function, takes as input, the dlnetwork
object dlnet
, a mini-batch of input data dlX
with corresponding targets T1
and T2
containing the labels and angles, respectively, and returns the gradients of the loss with respect to the learnable parameters, the updated network state, and the corresponding loss.
function [gradients,state,loss] = modelGradients(dlnet,dlX,T1,T2) [dlY1,dlY2,state] = forward(dlnet,dlX,'Outputs',["softmax" "fc2"]); lossLabels = crossentropy(dlY1,T1); lossAngles = mse(dlY2,T2); loss = lossLabels + 0.1*lossAngles; gradients = dlgradient(loss,dlnet.Learnables); end
The preprocessMiniBatch
function preprocesses the data using the following steps:
Extract the image data from the incoming cell array and concatenate into a numeric array. Concatenating the image data over the fourth dimension adds a third dimension to each image, to be used as a singleton channel dimension.
Extract the label and angle data from the incoming cell arrays and concatenate along the second dimension into a categorical array and a numeric array, respectively.
One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension produces an encoded array that matches the shape of the network output.
function [X,Y,angle] = preprocessData(XCell,YCell,angleCell) % Extract image data from cell and concatenate X = cat(4,XCell{:}); % Extract label data from cell and concatenate Y = cat(2,YCell{:}); % Extract angle data from cell and concatenate angle = cat(2,angleCell{:}); % One-hot encode labels Y = onehotencode(Y,1); end
batchNormalizationLayer
| convolution2dLayer
| dlarray
| dlfeval
| dlgradient
| fullyConnectedLayer
| minibatchqueue
| onehotdecode
| onehotencode
| reluLayer
| sgdmupdate
| softmaxLayer