This example shows how to improve the performance of the deployed deep learning network, by identifying bottle neck layers from the profiler results.
Xilinx™ ZCU102 SoC development kit.
Deep Learning HDL Toolbox™ Support Package for Xilinx™ FPGA and SoC
Deep Learning Toolbox™
Deep Learning HDL Toolbox™
To load the pretrained digits series network, enter:
snet = getDigitsNetwork();
% To view the layers of the pretrained series network, enter:
snet.Layers
ans = 15×1 Layer array with layers: 1 'imageinput' Image Input 28×28×1 images with 'zerocenter' normalization 2 'conv_1' Convolution 8 3×3×1 convolutions with stride [1 1] and padding 'same' 3 'batchnorm_1' Batch Normalization Batch normalization with 8 channels 4 'relu_1' ReLU ReLU 5 'maxpool_1' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 6 'conv_2' Convolution 16 3×3×8 convolutions with stride [1 1] and padding 'same' 7 'batchnorm_2' Batch Normalization Batch normalization with 16 channels 8 'relu_2' ReLU ReLU 9 'maxpool_2' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 10 'conv_3' Convolution 32 3×3×16 convolutions with stride [1 1] and padding 'same' 11 'batchnorm_3' Batch Normalization Batch normalization with 32 channels 12 'relu_3' ReLU ReLU 13 'fc' Fully Connected 10 fully connected layer 14 'softmax' Softmax softmax 15 'classoutput' Classification Output crossentropyex with '0' and 9 other classes
Create a target object that has a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. For Ethernet interface, enter:
hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');
To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2019.2. Set up the path to your installed Xilinx Vivado executable if it is not already set up. For example, to set the toolpath, enter:
% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');
For JTAG interface, enter:
% hTarget = dlhdl.Target('Xilinx','Interface','JTAG');
Create an object of the dlhdl.Workflow
class. When you create the object, specify the network and the bitstream name. Specify the saved pretrained digits neural network, snet, as the network. Make sure that the bitstream name matches the data type and the FPGA board that you are targeting. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data type.
hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single', 'Target', hTarget); % % If running on Xilinx ZC706 board, instead of the above command, % uncomment the command below. % % hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);
To compile the MNIST series network, run the compile function of the dlhdl.Workflow
object.
dn = hW.compile;
### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' offset_name offset_address allocated_space _______________________ ______________ ________________ "InputDataOffset" "0x00000000" "4.0 MB" "OutputResultOffset" "0x00400000" "4.0 MB" "SystemBufferOffset" "0x00800000" "28.0 MB" "InstructionDataOffset" "0x02400000" "4.0 MB" "ConvWeightDataOffset" "0x02800000" "4.0 MB" "FCWeightDataOffset" "0x02c00000" "4.0 MB" "EndOffset" "0x03000000" "Total: 48.0 MB"
To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the dlhdl.Workflow
object. This function uses the output of the compile function to program the FPGA board by using the programming file. It also downloads the network weights and biases.
hW.deploy;
### Programming FPGA Bitstream using Ethernet... Downloading target FPGA device configuration over Ethernet to SD card ... # Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd # Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd # Set Bitstream to hdlcoder_rd/hdlcoder_system.bit # Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd # Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb # Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM' Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect. System is rebooting . . . . . . ### Programming the FPGA bitstream has been completed successfully. ### Loading weights to FC Processor. ### FC Weights loaded. Current time is 28-Jun-2020 12:24:21
Load the example image.
inputImg = imread('five_28x28.pgm');
Execute the predict function of the dlhdl.Workflow
object that has profile option set to 'on' to display the latency and throughput results.
[~, speed] = hW.predict(single(inputImg),'Profile','on');
### Finished writing input activations. ### Running single input activations. Deep Learning Processor Profiler Performance Results LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 73231 0.00033 1 73273 3002.5 conv_module 26847 0.00012 conv_1 6618 0.00003 maxpool_1 4823 0.00002 conv_2 4876 0.00002 maxpool_2 3551 0.00002 conv_3 7039 0.00003 fc_module 46384 0.00021 fc 46384 0.00021 * The clock frequency of the DL processor is: 220MHz
Remove the NumFrames
, Total latency
, and Frames/s
from the profiler's results table. This includes removing the module level and network level profiler results. Retain only the network layer profiler results. Once the bottle neck layer has been identified display the bottle neck layer index, running time, and information.
speed('Network',:) = []; speed('____conv_module',:) = []; speed('____fc_module',:) = []; speed = removevars(speed, {'NumFrames','Total Latency(cycles)','Frame/s'}); % then sort the profiler's results in descending ordering speed = sortrows(speed,'Latency(cycles)','descend'); % the first row in the profile table is the bottleneck layer. Thus the % following layerSpeed = speed(1,:); layerName = strip(layerSpeed.Properties.RowNames{1},'_'); for idx = 1:length(snet.Layers) currLayer = snet.Layers(idx); if strcmp(currLayer.Name, layerName) bottleNeckLayer = currLayer; break; end end % disply the bottle neck layer index dnnfpga.disp(['Bottleneck layer index is ', num2str(idx), '.']);
### Bottleneck layer index is 13.
% disply the bottle neck layer running time percentage percent = layerSpeed.("Latency(cycles)")/sum(speed.("Latency(cycles)")) * 100; dispStr = sprintf('It accounts for about %0.2f percent of the total running time.', percent); dnnfpga.disp(dispStr);
### It accounts for about 63.29 percent of the total running time.
% disply the bottle neck layer information dnnfpga.disp('Bottleneck layer information: ');
### Bottleneck layer information:
disp(currLayer);
FullyConnectedLayer with properties: Name: 'fc' Hyperparameters InputSize: 1568 OutputSize: 10 Learnable Parameters Weights: [10×1568 single] Bias: [10×1 single] Show all properties