Class: TriRep
(Not recommended) Incenters of specified simplices
Note
incenters(TriRep)
is not recommended. Use incenter(triangulation)
instead.
TriRep
is not recommended. Use triangulation
instead.
IC = incenters(TR,SI)
[IC RIC] = incenters(TR, SI)
IC = incenters(TR,SI)
returns the coordinates of the incenter of each
specified simplex SI
.
[IC RIC] = incenters(TR, SI)
returns the incenters and the
corresponding radius of the inscribed circle/sphere.
TR | Triangulation representation. |
SI | Column vector of simplex indices that index into the triangulation matrix
TR.Triangulation . If SI is not specified the incenter
information for the entire triangulation is returned, where the incenter associated with
simplex i is the i 'th row of IC .
|
IC | m -by-n matrix, where m =
length(SI) , the number of specified simplices, and n is the
dimension of the space where the triangulation resides. Each row IC(i,:)
represents the coordinates of the incenter of simplex SI(i) . |
RIC | Vector of length length(SI) , the number of specified
simplices. |
Load a 3-D triangulation:
load tetmesh
Use TriRep
to compute the incenters of the first five
tetrahedra.
trep = TriRep(tet, X) ic = incenters(trep, [1:5]')
Query a 2-D triangulation created with DelaunayTri
.
x = [0 1 1 0 0.5]'; y = [0 0 1 1 0.5]'; dt = DelaunayTri(x,y);
Compute incenters of the triangles:
ic = incenters(dt);
Plot the triangles and incenters:
triplot(dt); axis equal; axis([-0.2 1.2 -0.2 1.2]); hold on; plot(ic(:,1),ic(:,2),'*r'); hold off;